by , , ,
Efficient exploration remains a major challenge for reinforcement learning. One reason is that the variability of the returns often depends on the current state and action, and is therefore heteroscedastic. Classical exploration strategies such as upper confidence bound algorithms and Thompson sampling fail to appropriately account for heteroscedasticity, even in the bandit setting. Motivated by recent findings that address this issue in bandits, we propose to use Information-Directed Sampling (IDS) for exploration in reinforcement learning. As our main contribution, we build on recent advances in distributional reinforcement learning and propose a novel, tractable approximation of IDS for deep Q-learning. The resulting exploration strategy explicitly accounts for both parametric uncertainty and heteroscedastic observation noise. We evaluate our method on Atari games and demonstrate a significant improvement over alternative approaches.
Information-Directed Exploration for Deep Reinforcement Learning N. Nikolov, J. Kirschner, F. Berkenkamp, A. KrauseIn Proc. International Conference on Learning Representations (ICLR), 2019
Bibtex Entry:
	archiveprefix = {arXiv},
	author = {Nikolov, Nikolay and Kirschner, Johannes and Berkenkamp, Felix and Krause, Andreas},
	booktitle = {Proc. International Conference on Learning Representations (ICLR)},
	eprint = {1812.07544},
	month = {May},
	primaryclass = {cs.LG},
	title = {Information-Directed Exploration for Deep Reinforcement Learning},
	year = {2019}}