
Data Mining – Learning from Large Data Sets
Final Exam

Date: 15 August 2013
Time limit: 120 minutes
Number of pages: 11
Maximum score: 100 points

You can use the back of the pages if you run out of space. Most subproblems can be solved
independently from each other. Collaboration on the exam is strictly forbidden.

Please fill in your name:

1 [15 points] Frequent Itemsets Generation With Map-Reduce

In this question you are asked to provide a Map-Reduce program for finding frequently bought
itemsets in a supermarket. You are given a set of transactions T = {t1, t2, . . . , tm}, ti ⊆ S,
where S is the set of items available at the supermarket. Each transaction ti represents a set
of items that were bought together.

ID Items

1 a, b, c

2 a, c,

3 a, c, e

4 c, e, d

Each subset of a transaction that contains more than one item represents an itemset. For
example, transaction with ID 1 contains the following itemsets: {a, b}, {a, c}, {b, c} an {a, b, c}.
The itemset {a, c} occurs in 3 transactions, while itemset {c, e} occurs in two transactions. If
the itemset occurs at least K times in the set of transactions we call it frequent.

You are given the functions:

• hash(s): returns the unique hash value for the itemset s,

• cost(s): returns the price of the itemset s, e.g. cost({a, c}) could be 5,

• subsets(s): returns a list of all subsets of the set s with cardinality greater than one,
e.g. subsets({a,b,c}) returns {a, b}, {a, c}, {b, c} and {a, b, c}.

1

Your task is to write a Map-Reduce program that outputs the hash value and number of
appearances of all frequent itemsets with cost at least P. Write the pseudo-code for
both the map and reduce functions. Assume that both map and reduce function have access
to P and K.

function map(T) // T is a set of transactions
begin

end

function reduce(key, values)

begin

end

2

2 [25 points] Active learning from pairwise comparisons

In this problem, you seek to learn a ranking of objects through pairwise comparisons. Let
{1, . . . , n} be the collection of objects we wish to rank, and X = {x1, . . . ,xn} ⊆ Rd be a set
of normalized feature vectors associated with these objects. To determine the ranking, you
want to devise an active learning strategy, where you can ask a human expert about a pair
of items. The expert will respond which item of them has higher rank. You can assume that
the expert always gives you an answer that is consistent with the true ranking.

Assume there is an underlying linear ranking function:

f∗(x) = 〈w∗,x〉,

such that for any pair of objects (xi,xj), it satisfies f∗(xi) > f∗(xj) whenever the rank of
xi is higher than the rank of xj (denoted xi � xj). Assume that for all i 6= j it holds that
f(xi) 6= f(xj). We call w∗ an optimal preference vector. As a concrete example, in case d = 2
and w∗ = [2, 0]T , the vector x1 = [0, 1]T would have lower rank than x2 = [1, 0]T , because
f∗(x1)− f∗(x2) = 〈w∗, (x1 − x2)〉 = [2, 0] · [−1, 1]T = −2 < 0.

(a) [10 points] Show that the problem of determining the optimal preference vector w∗

can be reduced to a problem of learning a classifier h : Rd → {+1,−1}, which, for any
given pair of objects i, j, will predict whether xi has higher rank than xj . In particular,
show how, given a training set of pairwise comparisons, a feasible preference vector can
be obtained by solving a linear classification problem.

3

(b) [8 points] Using the result from (a), develop a strategy for active learning through pair-
wise comparisons, which uses uncertainty sampling for SVMs. Write down your pseudo
code below (the first two lines are provided).

begin
Set U ← set of all pair of objects; // unlabeled pairs
Set L← ∅; // labeled pairs

end

(c) [7 points] Recall that in class we have used locality sensitive hashing to quickly find
the most uncertain examples for active learning. Similarly, in the case of active learning
through pairwise comparisons, how can you use LSH to speed up your algorithm proposed
in (b)? Write down the family of hash functions you use, and briefly explain your answer.

4

3 [20 points] Exemplar based k-means and submodularity

In this question you will consider a variant of the k-means clustering problem where the cluster
centers are restricted to be picked from among the points in the dataset - we call this exemplar
based k-means. The algorithm is given a set of n data points {x1,x2, . . . ,xn}, denoted by V.
The goal is to choose a set of k cluster centers, denoted by A, s.t. A ⊆ V. We define the loss
function for selecting A as the set of cluster centers as follows:

L(A) =
∑
i∈V

min
j∈A
||xi − xj ||22

Hence, the exemplar based k-means can be posed as a subset selection problem where the goal
is pick set A of size k so as to minimize L(A).

Let us suppose that one of the k cluster centers is fixed to be x′. Now, the goal is to pick
the remaining k-1 points that we denote by set S (i.e. A = S ∪ {x′}). We pose this as the
following maximization problem through the function F :

S∗ = arg max
S⊆V\{x′}, s.t. |S|=k−1

F (S)

where F (S) = L({x′})− L(S ∪ {x′})

(a) [14 points] Prove that function F is submodular. Hint: Show that F can be written as
a sum of simpler functions Fi, i.e., F (S) =

∑
i Fi(S), each of which is submodular.

5

(b) [6 points] Using the submodularity property of F , write an algorithm to approximately
solve the exemplar based k-means problem when one of the k centers is fixed to be x′.

4 [25 points] Online asymmetric SVM for imbalanced data

For this question, you will derive an alternate version of the online SVM for the case of
imbalanced data where the proportion of positive examples in the data is much higher than
that of negative examples. The goal is to design an SVM with an asymmetric hinge loss
function so that more weight is placed on the false-positives (i.e. wrongly classifying a negative
example) compared to that of false-negatives (i.e. wrongly classifying a positive example). We
call this alternate version of the SVM as Asym-SVM. For a given α ≥ 1, we can formulate
the Asym-SVM as the following optimization problem:

min
w
wTw

s.t. yi · wTx ≥ 1 ∀ yi = +1

yi · wTx ≥ α ∀ yi = −1

Note that for α = 1, the problem reduces to the classic SVM as studied in the course. By
introducing slack variables to handle noise, we can reformulate the above optimization problem
into an online convex program using an (asymmetric) hinge loss function as follows:

min
w

n∑
i=1

`asym(yi,xi; w) such that ||w||2 ≤
1

λ

6

(a) [8 points] Derive the asymmetric hinge loss function `asym for the Asym-SVM.

(b) [5 points] Plot the hinge loss function `asym separately for a positive example and for a
negative example as a function of the confidence η = ywTx.

7

(c) [5 points] Derive the subgradient of the loss function `asym with respect to the weight
vector w.

(d) [7 points] Augment the pseudo code below so that it performs online convex programming
for solving the Asym-SVM optimization problem.

begin
w0 ← 0;
for t = 1 to T do

// Observe example (xt, yt) at time t
// Fill in code to implement Asym-SVM

end

end

8

5 [15 points] Offline Bandit Evaluation

Suppose you have a set of n products, N = {1, 2, . . . , n}, in an inventory of an online store.
For each user visit to the website, you can recommend exactly one of these products. The user
then either buys the product or leaves the website. The user at time t is denoted by a feature
vector zt ∈ Rd. The zt’s arrive in an i.i.d sequence. For the sake of simplicity, assume that
you have no features for the products. Also assume, the list of available products is constant.
The problem of determining the optimal recommendation then translates to the contextual
k-armed bandit problem.

For each user visit, t, the website stores a triple (zt, it, rt) where zt is context, it ∈ N is the
product that was displayed and rt ∈ {0, 1} indicates whether the user bought the product or
not. The collection of these triples DT = {(z1, i1, r1), . . . , (zT , iT , rT)} is referred to as the
access log up to time T .

Under this setting, answer the following two questions:

(a) [9 points] Assume a scheme A (described here) was used to recommend the products.
Scheme A uses a fixed distribution P over the items and picks an item it for each user
visit according to the distribution P independently at random. Also, assume that every
item has probability at least pmin of being picked where pmin > 0.

Realizing that A is not an ideal algorithm, an alternative algorithm B has been suggested
as a replacement. B is adaptive in the sense that the item recommended by B at t depends
on the rewards of the items picked up to time t − 1. You are tasked with evaluating B
offline before actually deploying it on the website. To do so, you are also given the access
log file DT from the website that was generated when using scheme A.

From the lectures, we know that if P were the uniform distribution, then we can use
a rejection sampling technique to obtain an unbiased estimate of B’s performance using
DT . Now, suppose P is not necessarily uniform and as described above. Develop a
(sub)sampling scheme, which produces a new log D̂T , such that the rejection sampling
approach discussed in class can be used on D̂T to obtain an unbiased estimate of the
performance of B.

9

10

(b) [3 points] If T1 is the total number of lines in the access log DT , what is the expected
number of lines in D̂T produced by the scheme you developed in (a)?

(c) [3 points] Now, suppose the minimum sampling probability pmin used by scheme A is
0 (i.e., some items are never recommended by scheme A). Can we still subsample DT to
obtain D̂T such that we can use rejection sampling to obtain an unbiased performance
estimate of B? Please justify your answer.

11

	[15 points] Frequent Itemsets Generation With Map-Reduce
	[25 points] Active learning from pairwise comparisons
	[20 points] Exemplar based k-means and submodularity
	[25 points] Online asymmetric SVM for imbalanced data
	[15 points] Offline Bandit Evaluation

