
Data Mining – Learning from Large Data Sets
Final Exam

Date: 18 August 2014
Time limit: 120 minutes
Number of pages: 10
Maximum score: 100 points

You can use the back of the pages if you run out of space. Most subproblems can be solved
independently from each other. Collaboration on the exam is strictly forbidden.

[1 point] Please fill in your name and student ID:

1 [18 points] 1-Gram Markov Model Estimation

A language model is a probability distribution over sequences of words that come from some
dictionary D. More precisely, for every n ∈ N and sequence of words w1, . . . , wn, where wi ∈ D,
the language model assigns some probability P (w1, . . . , wn). One such model is the 1-gram
markov model, which assumes that wi is independent of w1, . . . , wi−2, when conditioned on its
immediate predecessor wi−1. Then, the probability factorizes as follows

P (w1, w2, . . . , wn) = P (w1 | BEG)P (w2 | w1) · · ·P (wn | wn−1),

where we have introduced the symbol BEG to denote the beginning of the document.

In this question, we ask you to estimate such a model from a corpus of documents using
Map-Reduce. Your mappers will get documents represented as lists of words. Your reducers
should output for each word w in the corpus a list of pairs [(w 1, p 1), (w 2, p 2), ...,

(w n, p n)], where p i is the fraction of times w was followed by word w i in the whole
corpus. You should include only those words w i for which p i > 0. Do not forget to include
the symbol BEG, which preceeds the first word of the document. For example, given documents

[‘‘peter’’, ‘‘likes’’, ‘‘chocolate’’], [‘‘you’’, ‘‘and’’, ‘‘peter’’, ‘‘ski’’],

[‘‘peter’’, ‘‘likes’’, ‘‘apples’’],

for the word ‘‘peter’’ you should output [(‘‘likes’’, 2/3), (‘‘ski’’, 1/3)] and for
the symbol BEG you should output [(‘‘peter’’, 2/3), (‘‘you’’, 1/3)].

You can assume to have the default Python types and functions at your disposal, and that
the symbol BEG is defined and different from any word appearing in the documents. Please
write the pseudo-code for your map and reduce functions.
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# Use emit(key, value) to emit a key-value pair.

map(document):

# Use output(word, list) to output the results.

# Order of the list is irrelevant.

reduce(key, values):
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2 [20 points] Online Support Vector Regression

For this question you will derive a regression version of online SVMs called support vector
regression (SVR). In contrast to regular SVMs, which are used for classification, SVRs are
used to learn a linear mapping y ≈ wTx, where y ∈ R.

Instead of the hinge loss (used in SVMs), we will use SVR with the squared ε-insensitive loss:
For a training example (yi,xi) and candidate coefficients w, this loss is defined as

`ε(yi,xi; w) =

{
0 if |yi −wTxi|2 ≤ ε
|yi −wTxi|2 − ε otherwise

Similar as for the SVM, in order to avoid overfitting, a regularization term needs to be added.
We will consider SVR using the `∞ norm, i.e., ||w||∞ = maxj |wj |.

Given a data set D = {(x1, y1), . . . , (xn, yn)} and constant λ > 0, support vector regression
with squared ε-insensitive loss and `∞ norm regularization solves the program

min
w

n∑
i=1

`ε(yi,xi; w) such that ||w||∞ ≤
1

λ

(a) [4 points] Plot the squared ε-insensitive loss as a function of ξ = y −wTx.

(b) [6 points] Derive the sub-gradient of the loss function `ε(y,x; w) with respect to the
weights w for a fixed data point (x, y).
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(c) [10 points] Derive the projection step for the vector w ∈ Rd w.r.t the `∞ norm. I.e.,
show how to find arg min{w′ : ||w′ −w||2 s.t. ||w′||∞ ≤ 1/λ} for a fixed vector w.
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3 [22 points] Active learning for interval indicator functions

Consider the problem of learning single-variable interval functions f : [0, 1] 7→ {−1, 0,+1},
where

f(x) :=


−1, if 0 ≤ x < a,
0, if a ≤ x < b,
+1, if b ≤ x ≤ 1,

+10-1

a b 10

and 0 < a < b < 1 (see above figure on the right). Suppose you are given a pool X =
{x1, ..., xn} of n unlabeled examples where each xi ∈ [0, 1]. You may assume that each
interval [0, a), [a, b), and [b, 1] contains at least one example from X. We would like to develop
a pool-based active learning strategy for this hypothesis space. Assuming there is no label
noise, the algorithm sequentially selects one of the n examples and obtains its true label.

(a) [3 points] Illustrate the version space on the 2-D coordinate system shown below (i.e.
set of hypotheses consistent with the observed labels) before observing the label of any
example. Note that each hypothesis is precisely represented by (a, b), hence the version
space can always be represented as a subset of [0, 1]2.

a

b

1

1

0

(b) [3 points] Suppose we pick an example x = 0.6 from X, and observe that its label is 0.
Illustrate the version space after incorporating this observation.

a

b

0.6 1

1

0.6

0
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(c) [10 points] Devise an active learning algorithm with sublinear label complexity, i.e., the
number of labeled examples needed to learn the labels of all n samples has to be strictly
sublinear in n. Provide pseudo-code for your algorithm. How many labeled examples does
it need?

(d) [6 points] Now suppose the label acquisition cost of the data is label-dependent. In
particular, the cost to label xi ∈ [a, b) is 1, while the cost to label an example in [0, a)
and [b, 1] is 0. Devise an active learning scheme with the smallest label cost. What is the
label cost of your algorithm?
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4 [20 Points] Online l1 K-means clustering

The goal of the l1 K-means clustering problem is: Given a set of points xi ∈ Rd, i = 1, . . . , n,
find the centers of k clusters µ = [µ1, . . . , µk], µi ∈ Rd minimizing the average l1 distance from
the points to the closest cluster center according to the following cost function:

µ∗ = arg min
µ

n∑
i=1

l(xi, µ)

where l(xi, µ) = minj∈1,...,k ||xi − µj ||1 is the loss function associated with data point xi.

In this question you are asked to design an online algorithm for the l1 K-means clustering
problem, similar to the online algorithm for the regular K-means problem discussed in class.
The difference is that instead of using the squared Euclidean (l2) norm ||xi−µj ||22, we use the
l1 norm ||xi − µj ||1.

(a) [6 Points] Compute the gradient of the loss function, i.e. 5µ l(xi, µ) where differentiable.
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(b) [10 Points] Write pseudo-code for an online algorithm for the l1 K-means problem based
on stochastic gradient descent, similar to the online K-means algorithm discussed in class.

(c) [4 Points] When would you prefer the l1 distance over the Euclidean (l2) distance as used
in the standard K-means algorithm, and why?
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5 [12 points] Bob’s Choice

Bob has been offered two different jobs. One of them is in tele-marketing and pays a fixed
0.9 CHF per minute. The other job is in tele-sales which pays a base 0.85 CHF per minute
plus commission for products sold. While Bob does not know the expected commission, we
know that the expected commission is 0.03 CHF per minute (with maximum commission fixed
at 1 CHF per minute).

Bob takes the following strategy. Initially, he decides to try the sales job for a fixed length of
1000 minutes (trial period) and then decides between the two jobs based on the mean pay at
the end of the trial period.

(a) [5 Points] Recall that a version of Hoeffding’s inequality states that if X1, X2, . . . , Xn

are independent random variables bounded in [0, 1]

P (
1

n

n∑
i=1

Xi − E(Xi) ≥ a) ≤ e−2na2

Use the inequality to derive an upper bound B on the probability that Bob makes the
wrong choice at the end of his trial period of 1000 minutes. Write an expression for B.

(b) [7 Points] Provide the tightest lower bound you can on the expected earnings of Bob for
a time period of 2000 minutes. Hint: You may wish to state your bound in terms of the
quantity B from part a).
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6 [7 points] Submodular functions

Let V be a finite set and G : 2V → R be a submodular function. Let S ⊆ V be drawn at
random from some probability distribution P (S) over 2V . Then show that F : 2V → R defined
as

F (A) =
∑
S⊆V

P (S)G(V \ (A ∩ S))

is a submodular function. You may use the closedness properties of submodular functions
discussed in class. Clearly state if you use any such property.
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