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1. MapReduce (13 points)

We consider a system that spawns a new process for each request it has to serve. �ese processes
are expected to run for 5 time units before �nishing. For monitoring purposes, the system logs in
every time unit the state of each process still in the system. �e log is stored in a �le, and each
line is of the form “t p c”, where t ∈ N is a timestamp, p ∈ N is a unique process identi�er, and
c ∈ {START, RUNNING, FINISHED} describes the process state. To keep the code readable, in your
solutions you can refer to these states as S, R and F respectively.

Below you can see an example of a (very short) log �le.

0 123 START

1 123 RUNNING

1 55 START

2 123 RUNNING

2 55 RUNNING

3 55 RUNNING

3 123 RUNNING

4 123 RUNNING

4 55 RUNNING

5 123 FINISHED

5 55 RUNNING

6 55 FINISHED

Note that in any time unit several processes can run in parallel.

(a)(3 points) Write a MapReduce program that, given a log �le, outputs all numbers t for which exactly one
line of the form “t p RUNNING” occurs in the log. In particular, when given the log �le above, the
program should output 1 and 5.
Note: �e space for your answer is on the next page..
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def map(key, value):

# Arguments: * key : line identifier, can be ignored

# * value : a string corresponding to a line from the log

# Use emit(k, v) to emit a key-value pair (k, v).

def reduce(key, values):

# Use emit(t, 1) to indicate that t satisfies the above condition.
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(b)(10 points) We now want to check if these processes are actually behaving as expected. A process p is said
to be compliant if whenever a line of the form “t p START” occurs with t, p ∈ N, then

• a line of the form “t+ 5 p FINISHED” occurs, and
• for i = 0, . . . , 4, a line of the form “t+ i p RUNNING” occurs.

Observe that the log �le presented above is compliant. Write a MapReduce program that �nds
all non-compliant processes.
Note: It is �ne if you report the same process as non-compliant multiple times, but you should
not report compliant processes as non-compliant.

def map(key, value):

# Arguments: * key : line identifier, can be ignored

# * value : a string corresponding to a line from the log

# Use emit(k, v) to emit a key-value pair (k, v).
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def reduce(key, values):

# Use emit(p, 1) to indicate that process p is non-compliant.
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2. Locality-sensitive functions (13 points)

A trit is a value in {0,1,2} and a tryte is a sequence of 8 trits. For a tryte A, let A[i], for 0 ≤ i < 8,
denote the i-th trit. �e L1-distance between two trytes A and B is de�ned as follows:

d(A,B) :=
∑

0≤i<8

|A[i]−B[i]| .

For 0 ≤ i < 8 and 0 ≤ j < 2, we de�ne a function hij , such that for any tryte A,

hij(A) :=

{
1 if A[i] > j,
0 otherwise.

LetH := {hij : 0 ≤ i < 8, 0 ≤ j < 2}.

(a)(3 points) LetA andB be two trytes and leth be chosen uniformly at random fromH. ComputePrH (h(A) = h(B)).
You may use the following fact: |{h ∈ H : h(A) 6= h(B)}| = d(A,B).

(b)(3 points) Prove that, for the distance d and for any δ1, δ2 ∈ [0, 16],H is
(
δ1, δ2, 1− δ1

16 , 1−
δ2
16

)
-sensitive.
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(c)(7 points) �e L∞-distance between two trytes A and B is de�ned as follows.

d∞(A,B) := max
0≤i<8

|A[i]−B[i]| .

Prove that, for the distance d∞ and for any δ1, δ2 ∈ [0, 2],H is (δ1, δ2,1− δ1
2 , 1−

δ2
16)-sensitive.
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3. Boosting locality-senstive functions (13 points)

Let r, b ∈ N and F be a family of functions. Let FAND
r be the family of functions obtained by applying

r-way AND to F and FOR
b be the family of functions obtained by applying b-way OR to F .

Let S be a non-empty set. Let F and d1 be a family of functions and a distance metric on S, respec-
tively. For any s1, s2 ∈ S, the following hold:

• 0 ≤ d1(s1, s2) ≤ 1.

• For f chosen uniformly at random from F , PrF (f(s1) = f(s2)) = 1− d1(s1, s2).

For each of the following statements, say whether it is true, false, or cannot be decided with the given
information. Justify your answers.

(a)(1 point) F is (0.1, 0.9, 0.0, 1.0)-sensitive.

(b)(2 points) F is (0.1, 0.9, 0.5, 0.5)-sensitive.
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(c)(3 points) FOR
100 is (0.1, 0.9, 0.9, 0.1)-sensitive.

Let G and d2 be a new family of functions and a new distance on S. For any s1, s2 ∈ S, the
following hold:

• 0 ≤ d2(s1, s2) ≤ 1.
• For g chosen uniformly at random from G, PrG(g(s1) = g(s2)) ≥ 1− d2(s1, s2).

For each of the following statements, say whether it is true, false, or cannot be decided with the
given information. Justify your answers.

(d)(3 points) GAND2 is (0.1, 0.9, 0.5, 1.0)-sensitive.
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(e)(4 points) For any δ1, δ2 ∈ [0, 1] with δ1 < δ2, G is (δ1, δ2, 1− δ1, 1− δ2)-sensitive.
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4. Online Convex Programming (19 points)

Assume that you are in the online convex programming se�ing over the domainX = [0, 2]. Further-
more, assume that there are a total of four rounds, so that each algorithm has to propose four points
x1, x2, x3 and x4. �e four functions used to compute the respective losses are �xed and equal to

f1(x) =
1

2
(x− 1)2, f2(x) =

1

2
(x− 2)2, f3(x) =

1

2
(x− 3)2, f4(x) =

1

2
(x− 2)2,

so that you want to minimize their sum.

(a)(6 points) An algorithm suggested x1 = 1, x2 = 2, x3 = 1, x4 = 2. How much regret was incurred?
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(b)(6 points) Assume we run online projected gradient descent on the above problem with a �xed step size of
ηi = 1 starting from x1 = 0. How much regret will be accrued?
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(c)(4 points) Assume that we are given the sequence of functions beforehand. What is the minimal regret
achievable by any algorithm in this se�ing?

(d)(3 points) As in the previous question, assume that we are given the sequence of functions beforehand.
What is the maximum possible regret any algorithm can have if change the domain to X = R?
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5. Linear Decision Rules and Active Learning (16 points)

Consider a domain with four points x1, x2, x3, x4, each one labelled as either a square or circle (for
the labels we will use +1 and −1 respectively). �e exact positioning of these data points and their
true labels are shown on the �gure below.

1 2 3 4

1

2

3

x1

x2

x3x4

Lisa wants to train a classi�er to correctly classify the data. While she does not have access to the
complete data set, she can draw samples from a distribution P that chooses from the four points
uniformly at random. A�er each sample that she obtains, she trains a new linear classi�er by solv-
ing the SVM optimization problem on the sampled data. She �rst drew two samples and obtained
{(x1,−1), (x4,+1)}, so that the data that she sees looks as on the �gure below.

1 2 3 4

1

2

3

x1

x4

(a)(2 points) On the �gure above draw the SVM solution that has been computed on the sampled data.
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(b)(9 points) A�er having sampled the two points shown above, Lisa continues to draw samples from P . How
many samples will she need in expectation until she computes a solution that correctly classi�es
all four points?
Hint:

∑∞
k=1 kp(1− p)k−1 = 1/p, for any 0 < p < 1.

15



(c)(5 points) Now assume that we are in the pool-based active learning se�ing. In addition to having the labels
for x1 and x4, Lisa can actively query for the labels of x2 and x3. In other words, she has the
following picture of the problem (we use diamonds for the points with unknown labels).

1 2 3 4

1

2

3

x1

x2

x3x4

If she is using the uncertainty sampling strategy, please answer (i) how many queries will she
make in total, and (ii) a�er howmany queries will she compute a classi�er that correctly classi�es
all four points.
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6. k-armed bandit with unknown horizon (25 points)

In this task we consider the k-armed bandit problem. Each arm i = 1, . . . , k is associated with a
unknown probability distribution Pi with mean µi and support in [0, 1]. In each round t the player
picks an arm it and obtains a random reward rt sampled from Pit . �e game is played for a total of
T rounds, however we assume that T is not known to the player.

As usual the expected regret at timeT is de�ned asRT = Tµ∗−
∑T

t=1 µit , whereµ∗ = maxi=1,...,k µi,
and the goal is to minimize regret.

(a)(2 points) Formally de�ne what it means for a strategy to have ’no regret‘.

(b)(8 points) Someone suggests the following, simple strategy, also known as ’explore-then-commit’. First
each arm is sampledm times (exploration) and then the arm which at that point has the best em-
pirical mean is played for the remaining rounds (exploitation). Show that for general distributions
this strategy cannot have the no-regret property in expectation if m is a constant independent
of T .
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(c)(5 points) We de�ne a con�dence set Cti =
{
µ : |µ− µ̂ti| ≤

√
2 ln(t)
nt
i

}
for each arm i. Explain how the sets

Cti are related to the UCB1 strategy and informally argue why UCB1 can be seen as following the
”optimism in the case of uncertainty” principle.

(d)(10 points) It can be shown that the Cti contain the true mean µi with probability at least 1 − 2/t4. Show
that under the assumption that all con�dence sets contain the true mean (ie for all t and all i,
µi ∈ Cti ), a suboptimal arm i is played at most 8 ln(T )

(µ∗−µi)2 + 1 times.
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