Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Data Mining
Learning from Large Data Sets

Lecture 1 — Introduction

263-5200-00L
Andreas Krause

How can we extract
useful information from
massive, noisy data sets?

Web-scale machine learning / DM

) RECOmmender Systems Continue shopping: Customers Who
Bought Items in Your Recent History

¢ Online advertising Also Bought

¢ Predict relevance of search HE——

results from click data

Watch Movies
Instantly You'll @

Suggestions (731) Rate Movies Taste Preferences

¢ Learning to index

¢ Machine translation

Suggestions in All Genres v

¢ Spam filtering

» Fraud detection
R L. Brouwer nvite | x
>21 billion indexed . Riley nvite | X
web pages N

Mitchell et al.,
Science, 2008

¢ Predict activation patterns for nouns

¢ Google’s trillion word corpus used to measure
co-occurrence

Monitoring transients in astronomy [Djorgovski]

Novae, Cataclysmic Variables Supernovae

> Source

Observer

Gamma-Ray Bursts Gravitational Microlensing Accretion to SMBHs

Data-rich astronomy [Djorgovski]

¢ Typical digital sky survey now generates ~ 10 - 100 TB, plus
a comparable amount of derived data products

¢ PB-scale data sets are on the horizon
¢ Astronomy today has ~ 1 - 2 PB of archived data, and
generates a few TB/day

¢ Both data volumes and data rates grow exponentially, with a
doubling time ~ 1.5 years

e Even more important is the growth of data complexity

‘ - e //
N Yt = i
s l
S ~ . .
s My

¢ For comparison:

Human memory ~ a few hundred MB

Human Genome<1GB [S
1 TB ~ 2 million books

Library of Congress (print only) ~ 30 TB

Q
O
-
D
O
)
©
O
O
)
'
-
O
g
4°)
)
-
O
&
O
@

Community Seismic Network

[with Chandy, Clayton, Heaton, Kohler, Faulkner, Olson et al.]

, CALTECH
s LT

ared

Sas 00:00:26
S N -

= |n'_:|'-‘~&:'_"";..‘"

Detect and monitor earthquakes using cheap
accelerometers in cell phones and other consumer devices

[See also Quake-Catcher (Cochran et al.), NetQuakes (USGS)] 3

Traditional Seismic Networks

Few sensors. Highly accurate.

Installations are expensive ($10,000) but low noise

: ..Lc.>s Angeles

Ity

igher dens

-
&
@
S

(-

.

J—
Q
-
Q

af

5000 sensors

[

JU| J1WISISS [epON]

=

asttHwy =

Eo

s EsPacific

LadndsSs o
e

Y

7491

Grissom, Island

<
2
v
g
=

5 km

Benefit from higher density

Grissom, Island

White; Island I > ') > White; Island gl
- A "‘.

‘Wavefront Carson Earthquake 2011/05/14 M=2.5 Peak Amplitude

Early Warning: Decision making under massive uncertainty

——— CALTECH

" :_‘t-;-ui 00:00:26

-
e s
g “-
I U = -
. k= =

¢ Opportunities for early warning:
¢ Stop trains, elevators, ...
¢ Shut valves, stabilize grid, ...

¢ False alarms can have high cost

¢ Missed detections can cost lives...
12

Naive approach

¢ Sensors send all data to a server
¢ Server analyzes data, decides whether to raise an alarm

Server Early Warning

¢ 1 million phones =» 30 TB data/day!!
e “Drinking from the fire hose”

13

How do we do it?

¢ Sensors analyze the data locally on the phones

¢ Communicate only if they experience unusual motion

Server Early Warning

¢ Local decisions affect global decision!
¢ Need to learn to send most useful information

14

Community sensing

Sensing:
traffic jams,
cascading failures,

Contribute
sensor data

Decision making:
Regulate traffic,
power grid,

TOomTOM

15

Learning from massive data

¢ Many applications require gaining insights from
massive, noisy data sets

¢ Science

e Physics (LHC, ...), Astronomy (sky surveys, ...), Neuroscience
(fMRI, micro-electrode arrays, ...), Biology (proteomics, ...),
Geology (sensor arrays, ...), ...

¢ Social science, economics, ...
o Commercial / civil / engineering applications
e Consumer data (online advertising, viral marketing, ...)

¢ Health records (evidence based medicine, ...)
¢ Traffic monitoring / earthquake detection ...

o Security / defense related applications

¢ Spam filtering / intrusion detection / surveillance,

Data volume in scientific and industrial applications

1000
AT&T
Walmart Google A
100 +— EBay Yahoo! =, |, i
o Facebook Microsoft - 1'C LSST
wid
2 .
© 0 LHC
o 10
(a A -
BaBar
1 ‘ | | | |
2000 2005 2010 2015 2020 2025
Year

[Meiron et al]

17

How can we extract
useful information from
massive, noisy data sets?

18

What is data mining?

Semi-automatic procedures to find patterns that are

Useful: help making better decisions (make money...)

General: hold on unseen data with some probability

19

The Search for ESP

¢ In the 1950s, a parapsychologist hypothesized that
some people had Extra-Sensory Perception (ESP)

¢ In an experiment, subjects where asked to guess 10
hidden cards —red or blue

¢ He discovered that almost 1 in 1000 got all ten right,
thus he concluded they had ESP

20

The Search for ESP cont’d

¢ He called the people with ESP for another test

o This time, almost all had lost their ESP

o His conclusion:

Don’t tell people they have ESP or they’ll lose it! ©

21

Data Mining Goals

¢ Approximate retrieval
¢ Given a query, find “most similar” item in a large data set
e Applications: GoogleGoggles, Shazam, ...

¢ Supervised learning (Classification, Regression)
¢ Learn a concept (function mapping queries to labels)
¢ Applications: Spam filtering, predicting price changes, ...
¢ Unsupervised learning (Clustering, dimension reduction)
¢ ldentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...
¢ Interactive data mining

e Learning through experimentation / from limited feedback
e Applications: Online advertising, opt. Ul, learning rankings, ...

22

Challenges for Data Mining

23

Main memory vs. disk access

Main memory:
Fast, random access, expensive

Secondary memory (hard disk)
~10% slower, sequential access, inexpensive

Massive data = Sequential access

How can we learn from streaming data?

24

Moore‘s Law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T2
Stw-Core Core l7\
2,600,000,000 “ o T";CO::’M ::00\..\ . 01:00 as:«;:amnnmsx
1,000,000,000 - AMD K10, ,_F G B o Tt
Itanum 2 with 9M8 ca\:hoPOo”Em. "\ S Com Op(nroﬂ 2400
AMD K108 Core i7 |Ouad)
N -
100,000,000 - Palell
Pantiam _‘. ®Baron ® Aom
OB

c 10.000.000 - curve show§ transistor .,..»--‘/Aniop:i . .

3 ' ’ count doubling every $=anum .
g e p Modern architectures:
2 1000000- wase,/ Many Cores

c

©

= Data Centers

100.000 - suzbfs'
ooe 0 80185
8086 oosoea

10000 I e =» Need distributed

008 3 @MOS 6500

2,300 - ‘°°",.s’"¥;c»\ 1802 a I go r i t h m S

| 1 1 1
1971 1980 1990 2000 2011

Date of introduction
25

The Data Gap

4,000,000
3,500,000
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000

500,000

0

[R. Grossman et al. “Data Mining for Scientific and Engineering Applications”]

@ Data Gap

Total new disk (TB) since 1995

Number ot

1995

1996 1997 1998

analysts

1999

26

Data Mining Challenges

¢ Can’t fit data set in main memory
e Access from disk much slower
¢ Can’t afford “random access” to the data
o Often can’t store data as quickly as it is arriving
¢ Need for parallelism
o Data centers as the new means of cost effective computing
¢ “Cloud computing”
¢ Humans don’t scale
¢ Need to deal with human attention as a scarce resource

2 Need specialized models and algorithms to cope with
these challenges

> This is the focus of this class

27

Other challenges

¢ Data quality
¢ Data ownership and distribution
¢ Privacy

¢ Security

‘ [N

28

Overview

¢ Advanced graduate course

¢ Four main topics
e Approximate retrieval
¢ Supervised learning
¢ Unsupervised learning
¢ Interactive data mining
all in the context of very large data sets

¢ Both theory and applications

¢ Handouts etc. on course webpage
e http://las.ethz.ch/courses/datamining-s12/

o Textbook:
¢ http://infolab.stanford.edu/~ullman/mmds/book.pdf

29

Overview

e Instructors:
Andreas Krause (krausea@ethz.ch)

¢ Teaching assistants:
Yuxin Chen (yuxin.chen@inf.ethz.ch)
Hasta Vanchinathan (hastagiri@inf.ethz.ch)
Adish Singla (singlaa@inf.ethz.ch)

¢ Administrative assistant:
Rita Klute (rita.klute@inf.ethz.ch)

30

Background & Prequisites

¢ Required: Solid basic knowledge in statistics, algorithms
and programming.

¢ Background in machine learning is helpful but not
required.

¢ We review necessary background, but will move quickly...

31

Coursework

¢ Grade based on written session exam

o Approx. six homeworks (not graded)

¢ Mix of theory and programming assignments (Python
recommended)

o Two parallel recitations
¢ Discussion of homework solutions
¢ Opportunities to ask questions

e Watch course webpage for updates
(rooms, group assignment)

¢ Next week no class, but recitations
32

What we will cover

¢ Fundamental tools from optimization, algorithms and
statistics for dealing with large data

¢ “What makes Google, Facebook, Amazon et al. tick”

¢ Topics include (syllabus on webpage)
e Fast nearest neighbor methods (shingling, LSH)
¢ Online learning / no regret optimization
¢ Fast training of SVM classifiers
¢ Bandit algorithms with applications online advertising
¢ Active Learning
o Sketching / Coresets
e Recommender Systems

33

What we will not cover

¢ Systems issues (e.g., databases; architecture and
management of data centers; ...)

¢ See specialized courses
¢ We focus on models and algorithms

o Data structures (KD-trees / R-trees, etc.)
¢ See specialized courses

¢ Domain specific algorithms, heuristics
¢ We focus on fundamental principles

34

Modern computing infrastructure
for data mining

Algorithmic primitives for using
this infrastructure

35

Infrastructure for modern data mining

¢ Data Centers
¢ Commodity hardware

¢ Many machines
connected in a network

¢ Challenges

¢ How to distribute
computation?

Ibl.gov

¢ Machines fail regularly

¢ MapReduce is desighed to handle these challenges

36

MapReduce

¢ ldea:
¢ Store data redundantly for reliability
¢ Bring computation close to the data
¢ Provide unified programming model to simplify parallelism

¢ Builds on Distributed File Systems

37

Distributed File Systems

¢ Provides global namespace

o Examples: Google GFS, Hadoop HDFs, Kosmix KFS

¢ Optimized for the common use case:

¢ Huge files (hundreds of GB to TB)
¢ Infrequent updates

¢ Frequent reads and appends

Chunk server 1

Chunk server 2

Chunk server 3

Chunk server N

38

Example: Counting words

¢ Given: Large file with one word per line

¢ Goal: Count the number of times each word appears

¢ Applications:
¢ Analyze logs to find popular queries, bots, ...

39

How would you do it?

o Case 1:
¢ Entire file fits in memory

o Case 2:

e File too large for memory, but all <word, count> pairs fit in
memory

¢ Data Mining Case:

¢ File on multiple disks, too many distinct words to fit in
memory

2?72

40

Map-Reduce: Overview

¢ Read a lot of data

¢ Map:
¢ Extract something you care about

¢ Shuffle and Sort
¢ Reduce:

o Aggregate, summarize, filter or transform
o Write the result

Keep general outline;
adapt map and reduce to fit the problem

41

More specifically

¢ Program specifies two primary methods:
o Map(k,v) =2 <k’, v'>*
e Reduce(k’, <v'>*) =2 <k’, v/’>*

o All v with same k’ are reduced
together and processed in v’ order

42

Map-Reduce: Word counting

The crew of the space shuttle
Endeavor recently returned to
Farth as ambassadors.
harbingers of a new era of
space exploration. Scientists
at NASA are saying that the
recent assembly of the Dextre
bot is the first step in a long-
term space-based man/
machine partnership. ""The
work we're doing now -- the
robotics we're doing -- is what
we're going to need to do to
build any work station or
habitat structure on the moon
or Mars," said Allard Beutel.

Big document

Provided by the
programmer

MAP:

reads input and
produces a set of
key value pairs

(space, 1)
(shuttle, 1)
(endeavor, 1)
(recently, 1)

(key, value)

Group by
key:

Collect all pairs
with same key

(shuttle, 1)
(recently, 1)

(key, value)

Provided by the
programmer

Reduce:

Collect all values
belonging to the
key and output

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

(key, value) 43

Word Count using MapReduce

map (key, value):
// key: document name; value: text of document
for each word w i1n value:

emit (w, 1)

reduce (key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
result += v
emit (key, result)

44

Example: Language modeling

¢ Statistical machine translation:

¢ Need to count number of times every 5-word sequence
occurs in a large corpus of documents

¢ How to implement in MapReduce:
e Map: extract (5-word sequence, count) from document
e Reduce: combine counts

45

Example: Distributed Grep

¢ Find all occurrences of the given pattern in a very
large set of files

¢ Map:
e Apply grep on assigned documents
¢ Emit list of documents that contain term

¢ Reduce:

o Merge lists

46

Example: Calculating statistics

¢ Input: Data set D with one number x; per line i

u(D) = %Z%

1

¢ Map: VW[A’)E()(z)_ﬁ’()z

e Compute n;and u(D,) for each chunk D,

¢ Output:

¢ Reduce:

47

Example: Shakemaps

¢ Want to figure out how strongly different regions are
shaken through earthquakes
¢ Input
¢ Each line: epicenter location; magnitude
¢ Map
¢ Reads a line of input and simulate the earthquake

e Output: (region ID, earthquake id, amount of shaking)

¢ Reduce

¢ Collect the region IDs and compute average (or maximum
etc.) amount of shaking

48

Map-Reduce: Environment

¢ Map-Reduce environment takes care of
¢ Partitioning the input data

¢ Scheduling the program’s execution across a set of
machines

¢ Handling machine failures
¢ Managing required inter-machine communication

=» The programmer doesn’t need to deal with this!
=>» Drastically simplifies writing massively parallel code!

49

Map-Reduce: A diagram

Inpu{ Big document

MAP: I

s
reads input and N)
produces a set of
(QACIERENS

Intermediate| | kl:v kl:vk2:v

— —
roup oy
key: [[[Group by Keyj]

._®.._
4@
—(®
—(®

k3vk4v kd:vkSv | kd:v | kl:vk3:v

Collect all pairs with
same key

Grouped |kl:v,v,v,v k3 v,v |kd:v,vv [kS:v

ééééé

v

Output

50

Map-Reduce

¢ Programmer specifies:
¢ Map and Reduce and input files

¢ MapReduce environment does
¢ Read inputs as a set of key-value-pairs

¢ Map transforms input <k,v>-pairs into a
new set of <k’,v'>-pairs

o Sort & Shuffle the <k’,v’>-pairs to output
nodes

e All <k’,v'>-pairs with a given k’ are sent
to the same reduce

¢ Reduce processes all <k’,v'>-pairs
grouped by key into new <k”’,v’>-pairs

e Write the resulting pairs to files

¢ All phases are distributed with many
tasks doing the work

51

Parallel Map-Reduce

r-———-=-"=-—-=-=-=-== 1T r-T="="==-=== = r—-—-—-=-=-=-=-= -
| Map Task 1 | | Map Task 2 | | Map Task 3 I
| L L :
! L L '
! L b :
! L b :
| L L |
| L b :
| klwvklv k2w | | k3w kduv kdwv kS |l I kd v klw k3w |
| Partitioning Function | | Partitioning Function I | Partitioning Function I

Sort and Group

r
| I | |
| I I klvvvw | k3vy I
:	:	
! |

I Reduce Task 1 ' I '

Sort and Group
kd:vv,v

52

¢ Input and final output are stored on a distributed file
system:

e Scheduler tries to schedule map tasks “close” to physical
storage location of input data

¢ Intermediate results are stored on local FS of map and
reduce workers

¢ Output is often input to another map reduce task
> Application composed from multiple MR stages
> Will see examples later in the course

53

o Master data structures:
e Task status: (idle, in-progress, completed)
¢ |dle tasks get scheduled as workers become available

e When a map task completes, it sends the master the
location and sizes of its R intermediate files, one for each
reducer

¢ Master notifies reducers

o Master pings workers periodically to detect failures

54

Failures

¢ Map worker failure

e Map tasks completed or in-progress at worker are reset to
idle

¢ Reduce workers are notified when task is rescheduled on
another worker

o Reduce worker failure
¢ Only in-progress tasks are reset to idle

o Master failure
¢ MapReduce task is aborted and client is notified

55

How many Map and Reduce jobs?

¢ M map tasks, R reduce tasks

¢ Rule of thumb:
¢ M and R >> number of nodes in cluster
e One DFS chunk per map is common

¢ Improves dynamic load balancing and speeds recovery from
worker failure

o Usually R is smaller than M

e output is spread across R files; want to deal with small
number of outputs

56

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 00 mun 18 sec

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

323 workers; 0 deaths

Type Shards Done Active Input(MB) Done(MB) Output(MB)
Map 13853 0| 323| 878934.6 13144 717.0
Shuffle 500 0| 323 717.0 0.0 0.0
Reduce 500 0 0 0.0 0.0 0.0
100
90
80
B 70
-—
LY
= 60
<
S 50
—
§ 40
c
S 30
20
10

cNENENENEN RN

100

200

Reduce Shard

300

400

ROO

Counters

Variable Minute
Mapped

(MB/s) 72.5
Shuffle

(MB/s) L
Qutput

(MB/s) L
doc-

i dexc-hits 145825686
docs-

indexed 206631
dups-in-

index- 0
merge

mr-

operator- 508192
calls

mr-

operator- 506631

57

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 05 min 07 sec

MapReduce status: MR_Indexer-beta6-large-2003 10 28 00 03

1707 workers; 1 deaths
Type Shards Done Active Input(MB) Done(MB) Output(IVIB)
Map 13853| 1857 1707 878934.6| 1919958 113936.6
Shuffle 500 0/ 500 113936.6 571137 571137
Reduce 500 0 0] 571137 0.0 0.0
100
90
80
B 70
-
o
= 60
<
@ 50
-—
§ 40
o
S 30
20
10
OO o L=d < o <
= & & 5 E
Reduce Shard

Counters

Variable

Minute

Mapped
(MB/fs)

699.1

Shuffle
(MB/s)

349.5

Output
(MB/s)

0.0

doc-
index-hits

5004411944

docs-
indexed

17290135

dups-in-
ndex-
merge

mr-
operator-
calls

17331371

mr-
operator-
outvuts

17290135

58

Started: Frn Nov 7 09:51:.07 2003 --up 0 hr 10 mun 18 sec

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

1707 workers; 1 deaths

Type |Shards Done Active Input(IVIB) Done(IVB) | Output(IVIB)
Map 13853| 5354| 1707| 878934.6| 406020.1 241058.2
Shuffle 500 0| 500 241058.2| 196362.5 196362.5
Reduce 500 0 0 196362.5 0.0 0.0
100
90
80
B 70
-
o
a 60
H
@ 50
-
§ 40
e
& 30

20

10

0

100

200

educe Shard

300

400

500

Counters

Variable

Minute

Mapped
(MB/s)

704.4

Shuffle
(MB/s)

371.9

Qutput
(MB/s)

0.0

doc-
index-hits

5000364228

docs-
indexed

17300709

dups-in-
index-
merge

mr-
operator-
calls

17342493

mr-
operator-
outputs

17300709

59

Started: Frn Nov 7 09:51:07 2003 -- up 0 hr 15 mun 31 sec
1707 workers; 1 deaths

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Type |Shards Done Active Input(IMB) Done(IMB) Output(IVIB)
Map 13853| 8841| 1707| 878934.6| 621608.5 369459.8
Shuffle 500 0| 500| 369459.8| 326986.8 326986.8
Reduce 500 0 0| 326986.8 0.0 0.0
100
90
80
T 70
-
LY
= 60
<
© 50
-
§ 40
e
& 30

20

10

0

100

<
<
o~

Reduce Shard

300

400

500

Counters

Vaniable

Minute

Mapped
(MB/fs)

706.5

Shuffle
(MB/fs)

419.2

Qutput
(MB/s)

0.0

doc-
index-hits

4982870667

docs-
indexed

17229926

dups-in-
mndex-
merge

mr-
operator-

calls

17272056

nn’-
operator-
outputs

17229926

60

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Frn Nov 7 09:51:07 2003 -- up 0 hr 29 min 45 sec
1707 workers; 1 deaths

Type |Shards Done | Active Input(IMB) Done(IVMB) Output(VIB)
Map 13853(13853 0| 878934.6| 878934.6 523499.2
Shuffle 500 195| 305| 523499.2| 523389.6 523389.6
Reduce 500 0| 195| 523389.6 2685.2 2742.6
100
90
80
B 70
-
LY
a 60
<
@ 50
-
§ 40
e
& 30

2

<

1

<

<

100

<
<
o~

Reduce Shard

300

400

ROO

Counters
Variable Minute
Mapped
(MB/s) 0.3
Shuffle
(MB/s) 0.5
Qutput
(MB/s) A2Ll
doc- p
indesc-hits 2313178|10¢
docs-
indexed 7936
dups-in-
index- 0
merge
rnr_
merge- 1954105
calls
merge- 1954105
outputs

61

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 31 min 34 sec
1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(MB) Output(VB)
Map 13853|13853 0| 878934.6| 878934.6 523499.2
Shuffle 500/ 500 0| 523499.2| 523499.5 523499.5
Reduce 500 0] 500 523499.5| 133837.8 136929.6
100
90
80
B 70
-
o
= 60
H
© 50
-
§ 40
e
8 30

2

<

1

<

(=2

100

<
<
o~

Reduce Shard

300

400

R00

Counters -
Variable Minute
Mapped 0.0
(MB/s)

Shuffle 0.1
(MB/s)

Output

(MB/s) 1238.8
doc-

ndex-hits g
docs- 0
mdexed

dups-n-

index- 0
merge

ﬁlr_

merge- |51738599
calls

merge- |51738599
outputs

62

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nowv 7 09:51:07 2003 -- up 0 hr 33 min 22 sec
1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(IVB) | Output(IVIB)
Map 13853(13853 0| 878934.6| 878934.6 523499.2
Shuffle 500, 500 0| 523499.2| 523499.5 523499.5
Reduce 500 0] 500| 523499.5| 2632833 269351.2
100
90
80
B 70
-
o
= 60
£
© 50
-
§ 40
e
& 30

2

<

1

<

<

100

<
<
N

Reduce Shard

300

400

R00

Counters -
Variable Minute
Mapped
MB/s) 0.0
Shuffle
QMB/s) 0.0
Output
QMB/s) 1225.1
doc-
index-hits e
docs- 0
imndexed
dups-in-
index- 0
merge
mr_
merge- |51842100
calls
merge- |51842100
outputs

63

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nowv 7 09:51:07 2003 -- up 0 hr 35 min 08 sec
1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(MB) Output(IVB)
Map | 13853|13853 0| 878934.6/ 878934.6| 5234992
Shufle | 500 500 0| 5234992 5234995 5234995
Reduce| 500 0| 500| 523499.5| 390447.6| 3994572

100

9

<

g

<

7

<

6

<

5

<

4

Percent Conpleted
<

3

<

2

<

1

<

o

<
<
o~

Reduce Shard

100

300

< <
< <
- uw

Counters -
Variable Minute
Mapped
QMB/s) 0.0
Shuffle
QMB/s) 0.0
Output
QMB/s) 1222.0
doc-
ndex-hits o
docs- 0
indexed
dups-n-
index- 0
merge
rm_
merge- 51640600
calls
merge- |51640600
outnuts

64

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nowv 7 09:51:07 2003 -- up 0 hr 37 mun 01 sec
1707 workers; 1 deaths

Type Shards Done AcﬁvevInput(l\/lB) Done(MB) Output(VB)
Map | 13853[13853 0| 878934.6| 878934.6| 5234992
Shufle | 500/ 500 0| 5234992 520468.6| 5204686
Reduce| 500 406| 94| 5204686 5122652 5143733

100

9

<

8

<

7

<

6

<

5

<

4

Percent Conpleted
<

3

<

2

<

1

<

<

<
<
o~

Reduce Shard

100

300

400

H00

Counters
Variable DMinute
Mapped

(MB/s) 0.0
Shuffle

(MB/s) e
Output

MB/s) 349.5
doc-

e i
docs- 0
indexed

dups-in-

index- 0
merge

mr_

merge- (35083350
calls

merge- |35083350
outputs

65

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nowv 7 09:51:07 2003 -- up 0 hr 38 min 56 sec
1707 workers; 1 deaths

Type Shards Done Active Input(VIB) Done(IVIB) Output(IVIB)
Map | 13853|13853 0| 878934.6] 878934.6| 5234992
Shufle | 500 500 o| 5234992 519781.8| 519781.8
Reduce| 500 498 2| 519781.8] 5193947 5194407

100

9

<

8

<

7

<

6

<

5

<

4

Percent Conpleted
o

3

<

2

<

1

<

<

100

200

Reduce Shard

300

400

R0O0

Counters

Mapped
(MB/s)
Shuffle
(MB/s)

Varable Minute

0.0

0.0

Output
(MMB/s)

9.4

doc-

docs-
indexed

index-
merge
mr-

merge-
calls

index-hits

dups-in- |

394792

105

merge-
outputs

394792

66

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Now 7 09:51:07 2003 -- up 0 hr 40 min 43 sec
1707 workers; 1 deaths

Type | Shards| Done|Active Input(MB)|Done(MB) Qutput(MB)
Map | 1385313853 0| 878934.6| 878934.6| 5234992
Shufle | 500 500 0| 5234992 519774.3| 5197743
Reduce| 500/ 499 1| 5197743 5197352| 519764.0
100

a0

80

B 70

-

[]

3 60

B

@ 50

-

S 40

e

& 30

2

<

1

<

o

100

200

Reduce Shard

300

400

)

500

Counters
Varnable Minute
Mapped
(MB/fs) 0.0
Shuffle
(MB/s) 1L
Output 19
(MB/s) '
doc-
index-hits 2 e
docs- 0
indexed
dups-mn-
index- 0
merge
rm_
merge- 73442
calls
merge- 73442
outputs

67

Refinement: Backup tasks

¢ Problem:
¢ Slow workers significantly lengthen the job completion time:

o Other jobs on the machine
» Bad disks
o Weird things

¢ Solution:

¢ Near end of phase, spawn backup copies of tasks
o Whichever one finishes first “wins”

o Effect:
¢ Dramatically shortens job completion time

68

Refinements: Backup tasks

o Backup tasks reduce job time
o System deals with failures

Normal No backup tasks 200 processes killed
20000 - Done: 20000 - Done: 20000 = Done:
@ 839 s 1235 s 886 s
g
~ 10000 — 10000 — 10000 —
5
o
C
= 0 I I I 1 I 1 0 1 I I I I I 0 I ILY 1 I I I I
0 200 400 600 80D 10001200 0 200 400 600 800 10001200 0 200 400 600 800|10001200
- 20000 20000 — 20000
S
&
o 10000 — 10000 — 10000 —
-
Q.
2
w 0 I | I | I | 0 1 | 1 | I | 0 IR | I | I
0 200 400 600 80D 10001200 0 200 400 600 800 10001200 0 200 400 600 800|10001200
~ 20000 — 20000 — 20000 —
2
[vn]
E
10000 — 10000 — 10000 —
5
o
5
o 0 T I T 1 T T 0 T I I I 1 1 0 I 1 I T I T
0 200 400 600 800 10001200 0 200 400 600 800 10001200 0 200 400 600 800 10001200
Seconds Seconds Seconds

69

Refinements: Combiners

¢ Often a map task will produce many pairs of the form
(k,v1), (k,v2), ... for the same key k

e E.g., popular words in Word Count

¢ Can save network time by pre-aggregating at mapper:
o combine(kl, list(vl)) =2 v2
¢ Usually same as reduce function

¢ Works whenever reduce function is commutative and
associative

70

Refinements: Partition Function

¢ Inputs to map tasks are created by contiguous splits
of input file

¢ Reduce needs to ensure that records with the same
key end up at the same worker

¢ System uses a default partition function:
¢ hash(key) mod R

¢ Sometimes useful to override:

e E.g., hash(hostname(URL)) mod R ensures URLs from a host
end up in the same output file

71

Implementations

¢ Google
¢ Patented MapReduce in 2004
¢ Not available outside Google

¢ Hadoop
¢ An open-source implementation in Java

o Uses HDFS for stable storage
¢ Download: http://lucene.apache.org/hadoop/

¢ Disco ® P P @ muses
o MapReduce for Python R0 CRD ERY TR grage
¢ Microsoft DryadLINQ x | x x x x X
» Generalize MapReduce data flow \/\O%/

[—

Channels _ Vertices

M Y
{processes)
Output files ‘ {

72

Cloud Computing

¢ Ability to rent computing by the hour
¢ Additional services e.g., persistent storage

o Examples

e Amazon Elastic Cloud (EC2)
¢ Microsoft Azure
e Google AppEngine

¢ All of those have some MapReduce implementations

73

What you need to know

¢ MapReduce
¢ Simple paradigm for writing bug-free massively parallel code

e User specifies map() and reduce() functions, MR framework
does the rest

¢ Which type of problems fit the framework

¢ In future lectures, we’ll see examples of more complex
algorithms implemented in MR

o In HW1, you get to try it ©

74

Acknowledgments

¢ Several slides adapted from Jeff Dean (Google) and
Jure Leskovec (Stanford)

75

