

Data Mining Learning from Large Data Sets

Lecture 2 – Nearest neighbor search

263-5200-00L Andreas Krause

Announcement

Homework 1 out by tomorrow

Topics

Approximate retrieval

- Given a query, find "most similar" item in a large data set
- Applications: GoogleGoggles, Shazam, ...
- Supervised learning (Classification, Regression)
 - Learn a concept (function mapping queries to labels)
 - Applications: Spam filtering, predicting price changes, ...
- Unsupervised learning (Clustering, dimension reduction)
 - Identify clusters, "common patterns"; anomaly detection
 - Applications: Recommender systems, fraud detection, ...

Interactive data mining

- Learning through experimentation / from limited feedback
- Applications: Online advertising, opt. UI, learning rankings, ...

Today:

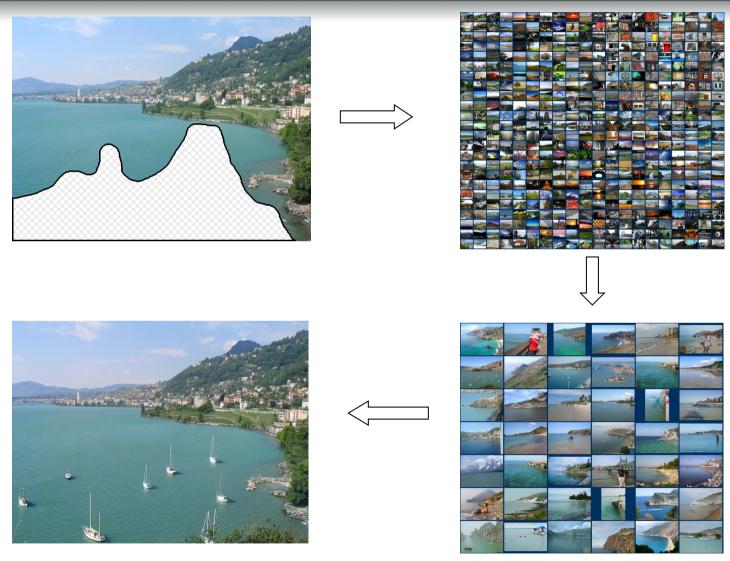
Fast nearest neighbor search in high dimensions

Multimedia retrieval

Google.com

shazam.com

Image completion



[Hays and Efros, SIGGRAPH 2007]

Nearest-neighbor search

Properties of distance fn's (metrics)

A function

$$d: S \times S \to \mathbb{R}$$

is called a distance function (metric) if it is

Nonnegative:
$$\forall s, t \in S : d(s, t) \geq 0$$

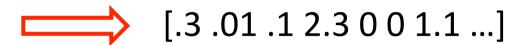
Discerning:
$$d(s,t) = 0 \Leftrightarrow s = t$$

Symmetric:
$$\forall s, t : d(s, t) = d(t, s)$$

Triangle inequality:

$$\forall s, t, r : d(s, t) + d(t, r) \ge d(s, r)$$

Representing objects as vectors



The quick brown fox jumps over the lazy dog ...

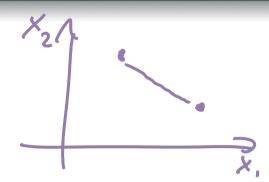
> [01<u>0001101</u>000] € ℝ^D

- Often, represent objects as vectors
 - Bag of words for documents
 - Feature vectors for images (SIFT, GIST, PHOG, etc.)
 - **...**
- Allows to use the same distances / same algorithms for different object types

Examples: Distance of vectors in R^D

Euclidean distance

$$d_2(x_1x') = \begin{cases} \begin{cases} x_1 - x_i' \end{cases}^2 \end{cases}$$



Manhattan distance

$$\mathcal{O}_{1}(x, x') = \sum_{i=1}^{N} |x_{i} - x_{i}'|$$

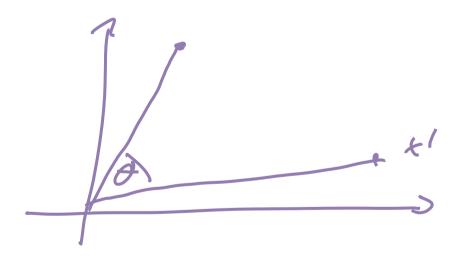
• ℓ^p distances:

$$d_p(x,x') = \left(\sum_{i=1}^D |x_i - x_i'|^p\right)$$
 $e^{i\omega_i} d_{\infty}(x_i x') = \max_i |x_i - x_i'|^p$

Cosine distance

Cosine distance

$$d(x, x') = \arccos \frac{x^T x'}{||x||_2 ||x'||_2} = \Theta$$



Edit distance

Edit distance: How many inserts and deletes are necessary to transform one string to another?

Example:

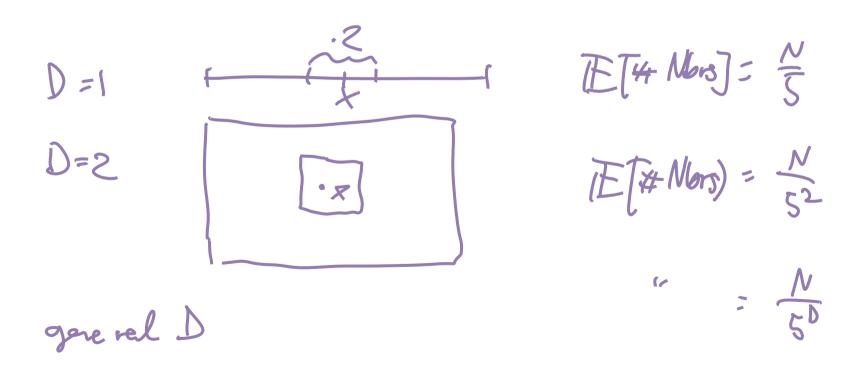
- d("The quick brown fox","The quike brwn fox") = 3
- d("GATTACA","ATACAT")
- Allows various extensions (mutations; reversal; ...)
- Can compute in polynomial time, but expensive for large texts
- → We will focus on vector representation

Many real-world problems are high-dimensional

- Text on the web
 - Billions of documents, millions of terms
 - In Bag Of Words representation, each term is a dimension..
- Scene completion, image classification, ...
 - Large # of image features
- Scientific data
 - Large number of measurements
- Product recommendations and advertising
 - Millions of customers, millions of products
 - Traces of behavior (websites visited, searches, ...)

Curse of dimensionality

- Suppose we would like to find neighbors of maximum distance at most .1 in [0,1]^D
- Suppose we have N data points sampled uniformly at random from [0,1]^D

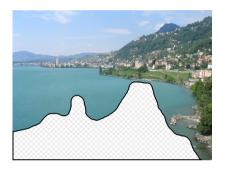


Curse of dimensionality

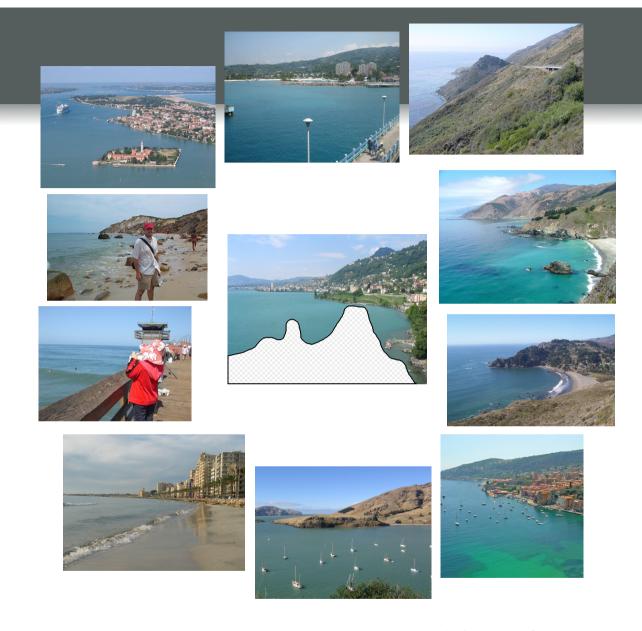
• Theorem [Beyer et al. '99] Fix ε >0 and N. Under fairly weak assumptions on the distribution of the data

$$\lim_{D \to \infty} P[d_{\max}(N, D) \le (1 + \varepsilon)d_{\min}(N, D)] = 1$$

The Blessing of Large Data



10 nearest neighbors from a collection of 20,000 images



10 nearest neighbors from a collection of 2 million images

Application: Find similar documents

- Find "near-duplicates" among a large collection of documents
 - Find clusters in a document collection (blog articles)
 - Spam detection
 - Detect plagiarism
 - **...**
- What does "near-duplicates" mean?

Near-duplicates

- Naïve approach:
 - Represent documents as "bag of words"
 - Apply nearest-neighbor search on resulting vectors
- Doesn't work too well in this setting.

Shingling

- To keep track of word order, extract k-shingles (aka k-grams)
- Document represented as "bag of k-shingles"
- Example: a b c a b

Shingling implementation

- How large should one choose k?
 - Long enough s.t. the don't occur "by chance"
 - Short enough so that one expects "similar" documents to share some k-shingles
- Storing shingles
 - Want to save space by compressing
 - Often, simply hashing works well (e.g., hash 10-shingle to 4 bytes)

Comparing shingled documents

- Documents are now represented as sets of shingles
- Want to compare two sets
- E.g.: A={1,3,7}; B={2,3,4,7}

Ovelap
$$|A \cap B| = 2$$

Total # $|A \vee B| = 5$

Jaccard distance

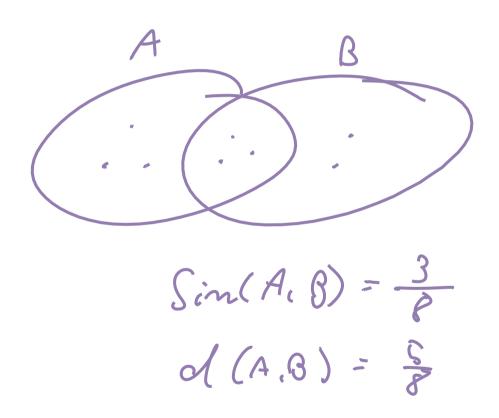
Jaccard similarity:

$$Sim(A, B) = \frac{|A \cap B|}{|A \cup B|} \in [0, 0]$$

Jaccard distance:

$$d(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

Example



Near-duplicate detection

- Want to find documents that have similar sets of k-shingles
- Naïve approach:
- For i=1:N
 - For j=1:N
 - Compute d(i,j)
 - If d(i,j) < ε then declare near-duplicate

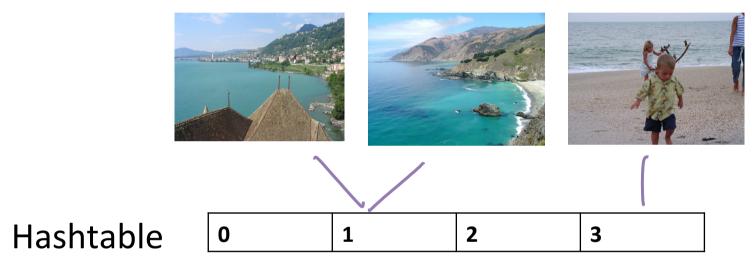
Can we do better??

Warm-up

- Given a large collection of documents, determine whether there exist exact duplicates?
- Compute hash code / checksum (e.g., MD5) for all documents
- Check whether the same checksum appears twice
- Both can be easily parallelized

Locality sensitive hashing

 Idea: Create hash function that maps "similar" items to same bucket



- Key problem: Is it possible to construct such hash functions??
 - Depends on the distance function
 - Possible for Jaccard distance!! ©
 - Some other distance functions work as well

Shingle Matrix

documents

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

shingles

Min-hashing

- Simple hash function, constructed in the following way:
- Use random permutation π to reorder the rows of the matrix
 - Must use same permutation for all columns C!!
- h(C) = minimum row number in which permuted column contains a 1

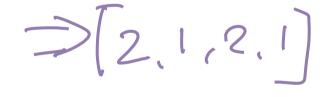
$$\underline{h(C)} = h_{\pi}(C) = \min_{i:C(i)=1} \pi(i)$$

Min-hashing example

Input matrix

3	1	0
4	1	0
7	0	1
6	0	1
1	0	1
2	1	0
5	1	0

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0



Min-hashing example

Input matrix

3	
4	
7	
6	
1	
2	
5	

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Min-hashing property

 Want that similar documents (columns) have same value of hash function (with high probability)

Turns out it holds that

$$\Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$$

Proof

$$Sm(C_1,C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

$$4 \text{ cases} \quad \# \text{ Occ}$$

$$1 \quad 1 \quad \alpha$$

$$1 \quad 0 \quad b$$

$$0 \quad 1 \quad c$$

$$0 \quad 0 \quad d$$

$$Sin(C_1,C_2) = \frac{\alpha}{\alpha+b+c}$$

Proof

Step throng vows in TT-order
Stop upon vow that contains at least one 1
what's the prob. that vow is of type [1]
$P(") = \frac{\alpha}{\alpha + b + c}$

	C_1	C
a	1	1
b	1	0
С	0	1
d	0	0

Near-duplicate search with Min-Hashing

- Suppose we would like to find all duplicates with more than 90% similarity
- Apply min-hash function to all documents, and look for candidate pairs (documents hashed to same bucket)
- How many 90%-duplicates will we find? $\approx 90\%$
- How many 90%-duplicates will we miss? > P P%
- How can we reduce the number of misses?

Reducing the "misses"

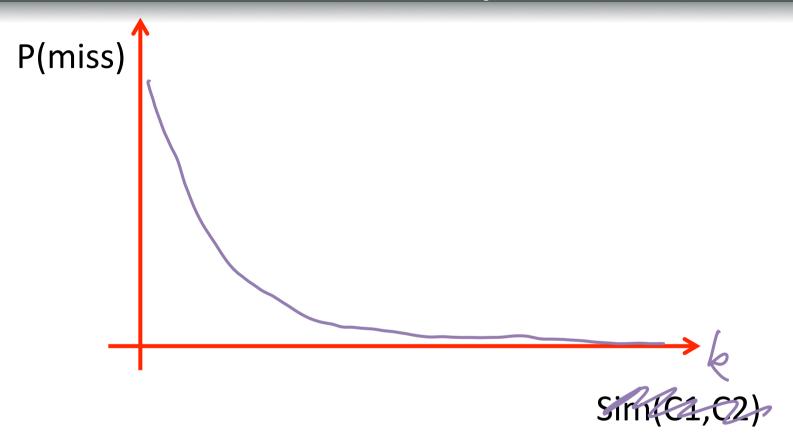
- Apply multiple independently random hash functions
- Consider candidate pair of near duplicates if at least one of the functions hashes to same bucket
- What's the probability of a "miss" with k functions?

$$P("m.35") = d(C,C_2)^{k}$$

$$= (1-s)^{k}$$

$$= 5-5in(C,C_1)$$

Example



 Thus, using multiple independent hash functions can exponentially reduce probability of misses!

Min-hash signatures

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4	
Col/Col	0.75	0.75	0	0	
Sig/Sig	0.67	1.00	0	0	

Implementing min-hashing

- Difficult to randomly permute a data set with a billion rows
- Even representing a permutation of size 10^9 is expensive
- Accessing rows in permuted order is infeasible (requires random access)

Approximate min-hashing

• Directly represent permutation π through hash function h!

$$TT(i) = h(i) = ai + b \mod n$$

- Could happen that h(i)=h(j) for i ≠ j, but this is rare for good h
- Note: Will use same notation for h(r) and h(C)

$$h(C) = \min_{i: C(i)=1} h(i)$$

- Suppose h(r) < h(s). Then row r appears before s in π
- Why is this useful?
- Can store h very efficiently
- Allows to process data matrix row-wise..

Example

Row	C1	C2
1	1	0
2	0	1
3	1	1
4	1	0
5	0	1

$$h(x) = x \mod 5$$

 $h(1)=1, h(2)=2, h(3)=3, h(4)=4, h(5)=0$

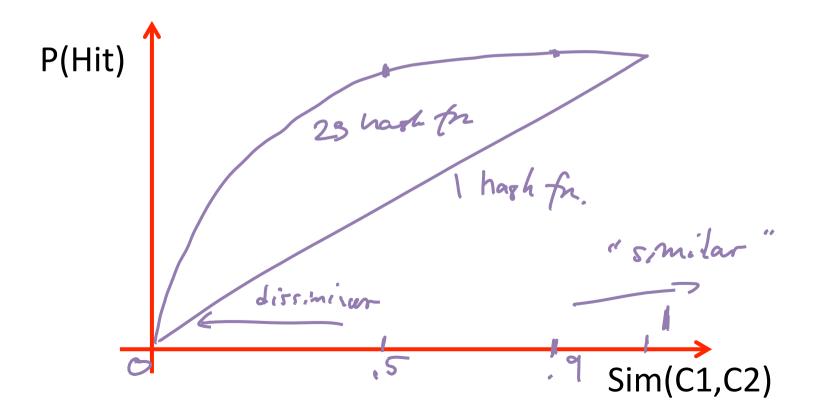
$$g(x) = 2x+1 \mod 5$$

 $g(1)=3, g(2)=0, g(3)=2, g(4)=4, g(5)=1$

$$M = 2$$

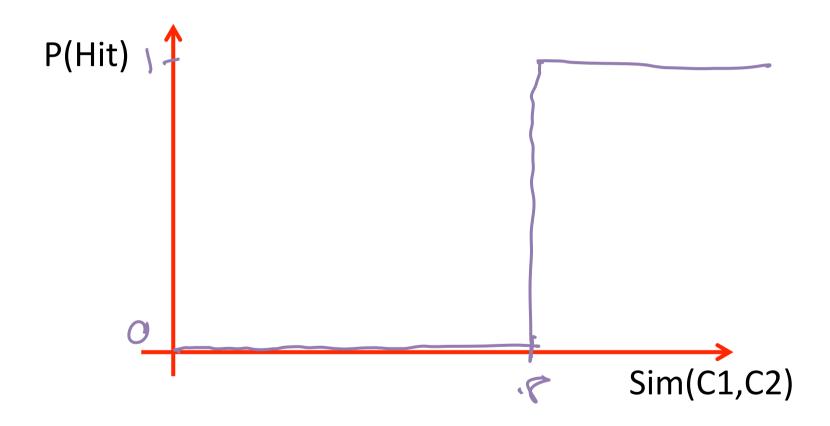
False positives

- Increasing number of hash tables reduces false negative rate ©
- Also increases false positive rate



False positives

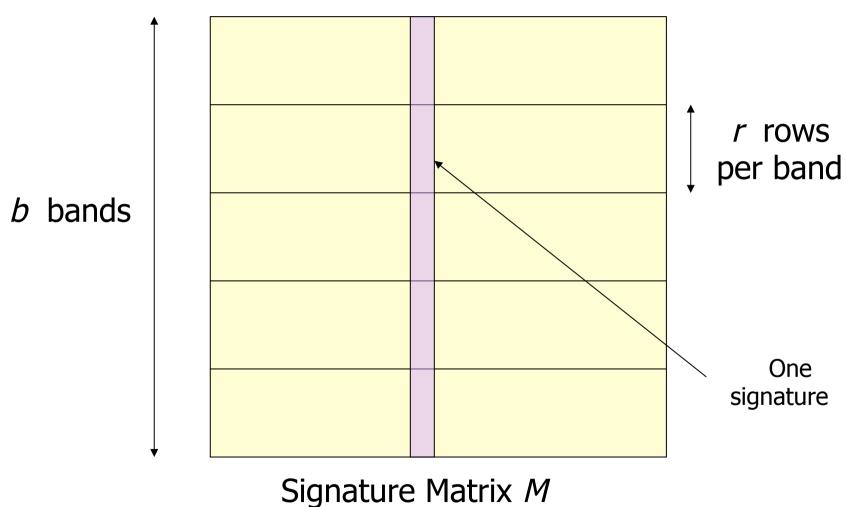
• Ideally want:



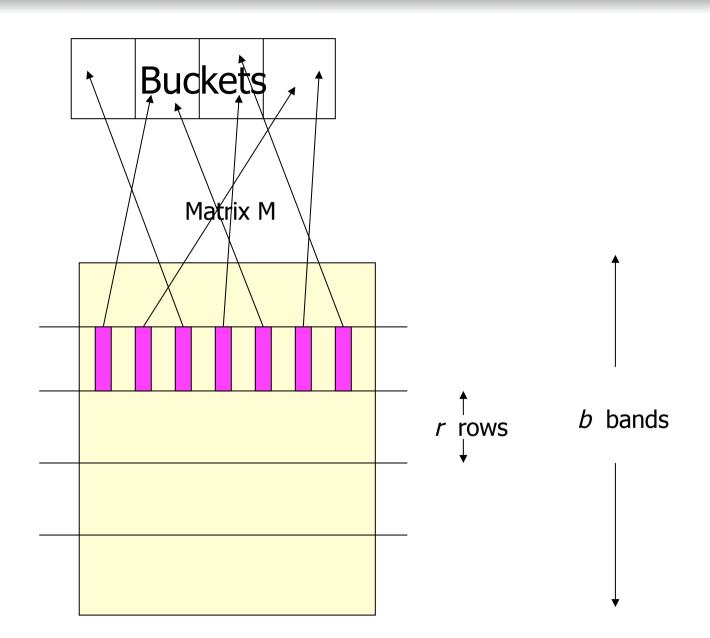
Ingenious trick

- Signature matrix compactly represents similarity between documents
 - Jaccard distance ~ I1-distance of columns
 - Similar documents have similar signatures
- Naïve approach: Compare any pair of columns to see if their similar
 - Compact representation → faster
 - Still N^2 comparisons ⊗
- Will see how to hash columns s.t. with high probability
 - return similar pairs (d(C1,C2) < ε)
 - do not return dissimilar pairs $(d(C1,C2) > \varepsilon)$

Partitioning the signature matrix



Hashing bands of M



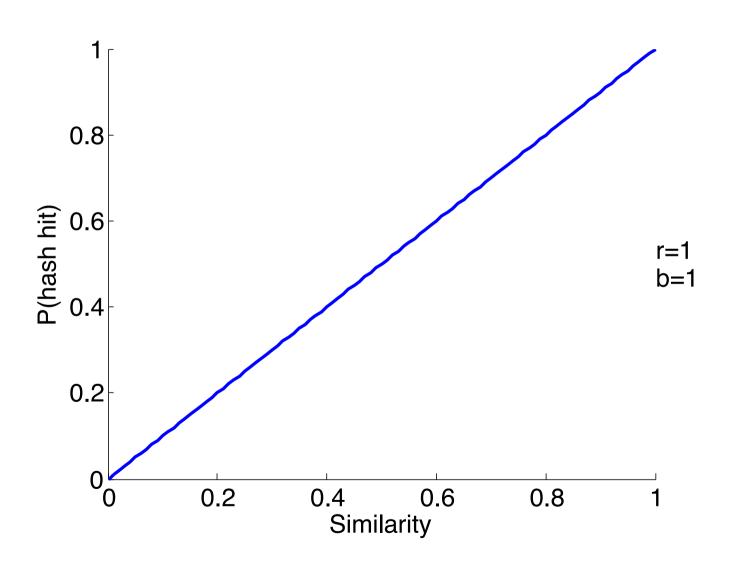
Hashing the signature matrix

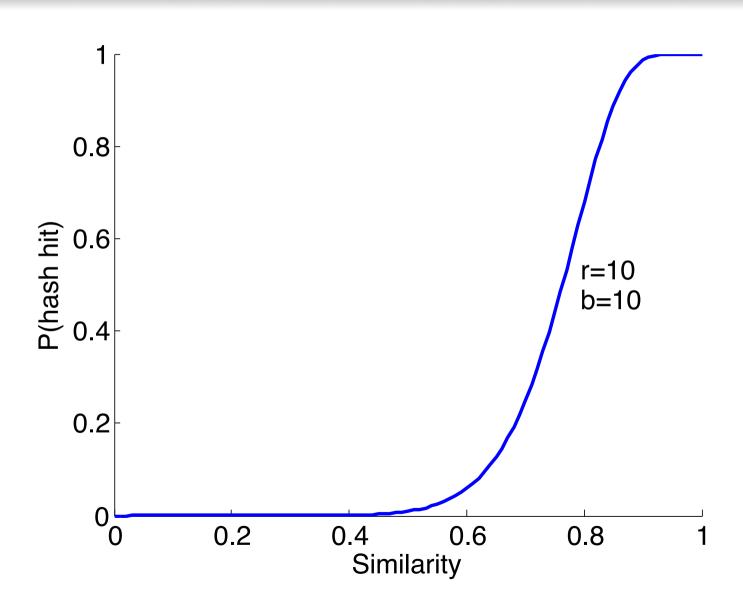
- Signature matrix M partitioned into b bands of r rows.
- One hash table per band, independent hash functions
- For each band, hash its portion of each column to its hash table
 - For purpose of analysis, let's assume there's no "false collisions"
 - Doesn't affect correctness of algorithm
- Candidate pairs are columns that hash to the same bucket for at least one band.
- Why is this useful?

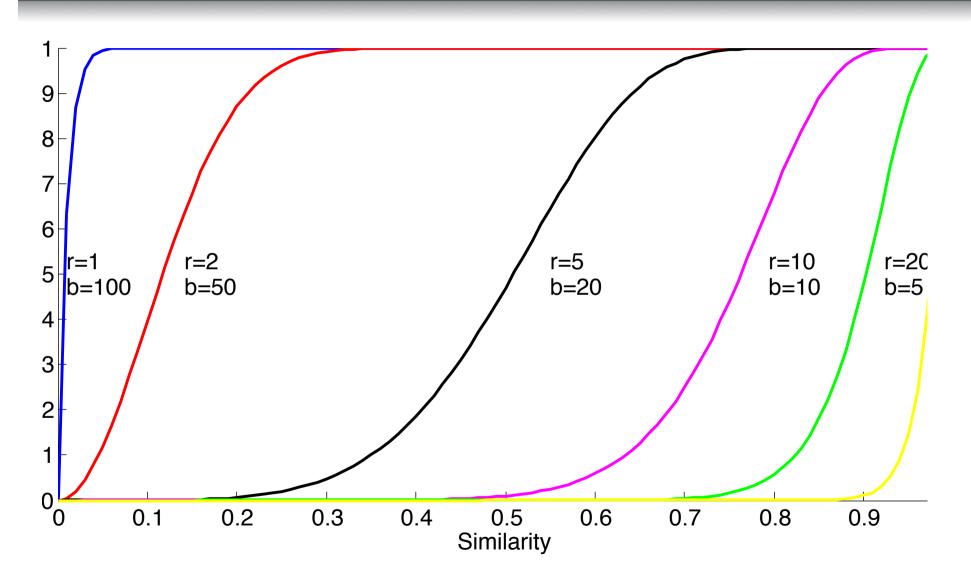
Analysis of partitioning

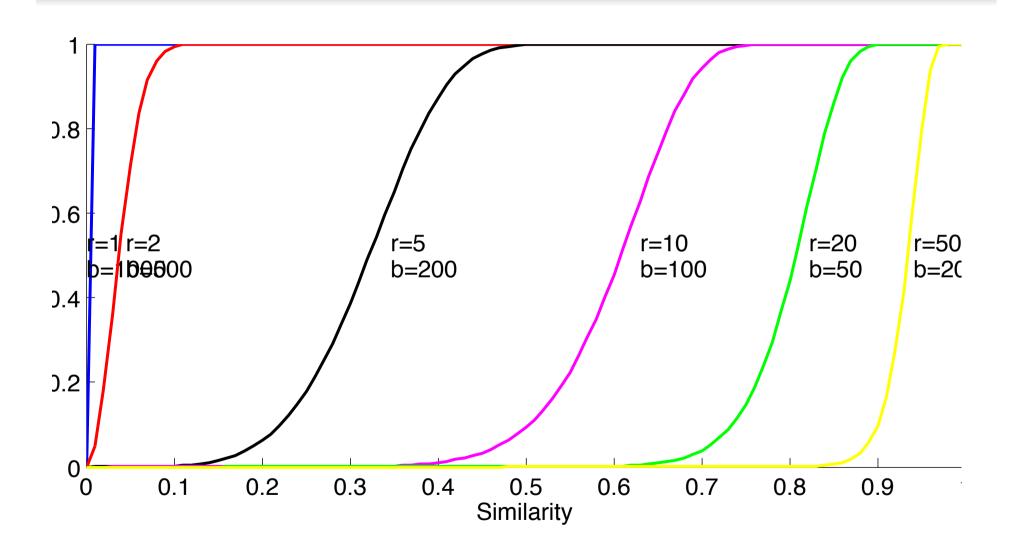
Suppose columns M1 and M2 have similarity s

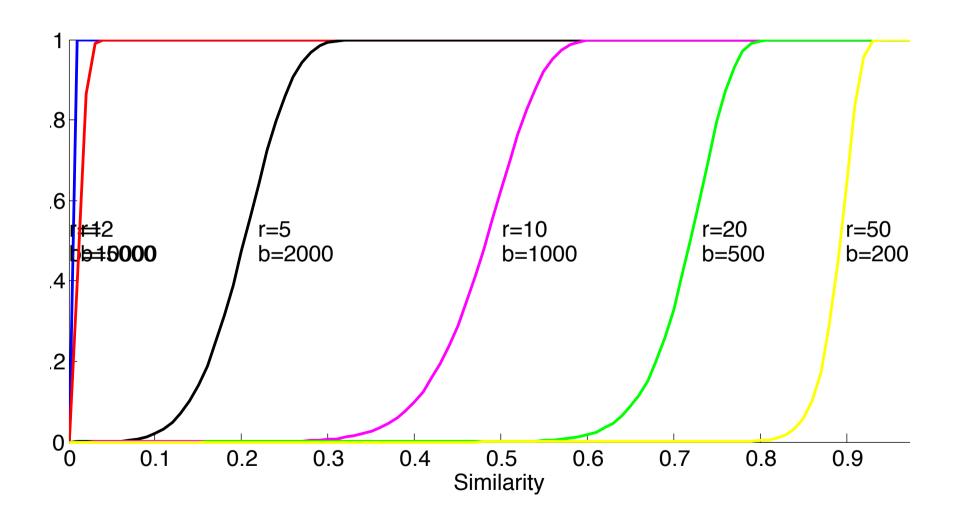
One hash function











Implementation details

- Tune r and b to achieve desired similarity threshold
- Typically favor
 - few false negatives
 - more false positives
- Do pairwise comparisons of all resulting candidate pairs (in main memory), to eliminate false positives
- Typically also compare the actual documents (needs another pass through the data)

Acknowledgments

 Several slides adapted from the material accompanying the textbook (Anand Rajaraman, Stanford)