Swiss Federal Institute of Technology Zurich

Data Mining
Learning from Large Data Sets

Lecture 2 — Nearest neighbor
search

263-5200-00L
Andreas Krause

Announcement

¢ Homework 1 out by tomorrow

¢ Approximate retrieval
¢ Given a query, find “most similar” item in a large data set
e Applications: GoogleGoggles, Shazam, ...
¢ Supervised learning (Classification, Regression)
¢ Learn a concept (function mapping queries to labels)
e Applications: Spam filtering, predicting price changes, ...
¢ Unsupervised learning (Clustering, dimension reduction)
¢ ldentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...
¢ Interactive data mining
e Learning through experimentation / from limited feedback
e Applications: Online advertising, opt. Ul, learning rankings, ...

Fast nearest neighbor search
in high dimensions

Multimedia retrieval

shazam.com

Google.com

Image completion

[Hays and Efros, SIGGRAPH 2007] 6

Nearest-neighbor search

is called a distance function (metric) if it is

Nonnegative: Vs, t € .S :d(s,t) >0
Discerning: d(s,t) = 0= s =t

Symmetric: Vs, t:d(s,t) = d(t, s)
ot
7\
Triangle inequality: N e

Vs, t,r:d(s,t)+d(t,r) > d(s,T)

Properties of distance fn’s (metrics)
A function d-S%x S SR

8

Representing objects as vectors

—> [3.01.123001.1..]

The quick brown

fox jumpsover | ——> [01000110100 O]E‘RD

the lazy dog ... ‘
——

o Often, represent objects as vectors
¢ Bag of words for documents
¢ Feature vectors for images (SIFT, GIST, PHOG, etc.)

‘ LN}

o Allows to use the same distances / same algorithms
for different object types

Examples: Distance of vectors in RP

¢ Euclidean distance X- [x X/} .
Z(xx) ’gl/x - X' \'
™ X,

¢ Manhattan distance

)(2/)
f
o
04](>< ‘)(‘) _ i | &; = ¥, ["
&y

» ¢Pdistances: 5 “1/p >
o) = (31 i
1=1

PP e ol (2) wex X =x]

¢

10

Cosine distance

o Cosine distance

T ,./
d(xz,z") = arccos e r 6

[]2fl2"]|2

g

N .

11

Edit distance

Edit distance: How many inserts and deletes are
necessary to transform one string to another?

Example:

7”7 n

» d(“The quick brown fox”,”The quikc brwn fox”) =3
o d(“GATTACA”,”ATACAT”)

¢ Allows various extensions (mutations; reversal; ...)

¢ Can compute in polynomial time, but expensive for
large texts

=2 We will focus on vector representation
12

Many real-world problems are high-dimensional

¢ Text on the web

¢ Billions of documents, millions of terms

¢ In Bag Of Words representation, each term is a dimension..
¢ Scene completion, image classification, ...

¢ Large # of image features

¢ Scientific data
¢ Large number of measurements

¢ Product recommendations and advertising
¢ Millions of customers, millions of products
¢ Traces of behavior (websites visited, searches, ...)

13

Curse of dimensionality

¢ Suppose we would like to find neighbors of maximum
distance at most .1 in [0,1]°

o Suppose we have N data points sampled uniformly at
random from [0,1]°

D =
v Efpte) = 5

T
i
o
Y
&
ol
(A
/Z (/‘\]2

e el D

14

Curse of dimensionality

o Theorem [Beyer et al. ‘99] Fix €>0 and N. Under fairly
weak assumptions on the distribution of the data

lim Pldmax(N, D) < (1 + €)dmin (N, D)] = 1

D— o0

15

The Blessing of Large Data

Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a
collection of 20,000 images

Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a
collection of 2 million images

Hays and Efros, SIGGRAPH 2007

Application: Find similar documents

¢ Find “near-duplicates” among a large collection of
documents

¢ Find clusters in a document collection (blog articles)
¢ Spam detection
¢ Detect plagiarism

‘ [N}

¢ What does “near-duplicates” mean?

19

Near-duplicates

¢ Naive approach:
¢ Represent documents as “bag of words”
¢ Apply nearest-neighbor search on resulting vectors

¢ Doesn’t work too well in this setting.

20

Shingling

¢ To keep track of word order, extract k-shingles
(aka k-grams)

e Document represented as }ﬁOf k-shingles”

¢ Example: abcab

2 SJ‘c";&r 20 =bbe, ca [

21

Shingling implementation

¢ How large should one choose k?
e Long enough s.t. the don’t occur “by chance”

¢ Short enough so that one expects “similar” documents to
share some k-shingles

¢ Storing shingles
¢ Want to save space by compressing

¢ Often, simply hashing works well (e.g., hash 10-shingle to 4
bytes)

22

Comparing shingled documents

¢ Documents are now represented as sets of shingles
¢ Want to compare two sets
o E.g.: A={1,3,7}; B={2,3,4,7}

C).,Jo.P (AABI;Z
TAel # (Avg] = &

23

Jaccard distance

e Jaccard similarity:

. ANB
Sim(A, B) = 108 ¢ [0, 1
¢ Jaccard distance:
ANB

d(A,B) =1

AUB

24

25

Near-duplicate detection

¢ Want to find documents that have similar sets of
k-shingles

¢ Naive approach:
¢ Fori=1:N
e For j=1:N @(/\/Q',l)>

o Compute d(i,j)
o If d(i,j) < € then declare near-duplicate

¢ Infeasible even for moderately large N ®

¢ Can we do better??

26

¢ Given a large collection of documents, determine
whether there exist exact duplicates?

o Compute hash code / checksum (e.g., MD5) for all
documents

o Check whether the same checksum appears twice
¢ Both can be easily parallelized

27

Locality sensitive hashing

¢ ldea: Create hash function that maps “similar” items
to same bucket

Hashtable |0 1 2 3

¢ Key problem: Is it possible to construct such hash
functions??
¢ Depends on the distance function
e Possible for Jaccard distance!! ©
e Some other distance functions work as well -

Shingle Matrix

shingles

documents

110110
110101
0|10 1
0|10 1
0|10 1
110]1]0
110]1]0

29

Min-hashing

¢ Simple hash function, constructed in the following way:

¢ Use random permutation 1t to reorder the rows of the matrix

¢ Must use same permutation for all columns C!!

¢ h(C) = minimum row number in which permuted column
containsa l

30

Min-hashing example

Input matrix

3[[1]0|1]0
4/ |1]0|0|1
7l o] 1]0]1
6/ [o|1]0]1 ?(Z\I,Q,L\)
1| |o|1]0]1
2 [1]0|1]0
5/ [{1]0]1]0
st

[2 31

L
O
=
(
>
Q
0o

=

=
V)]
(

T

=

=

Input matrix

32

Min-hashing property

¢ Want that similar documents (columns) have same
value of hash function (with high probability)

¢ Turns out it holds that

33

34

] 2

S‘l‘*f 4’%7 (WA

N\ TI"'—cL(\

(o upm vow T omda
q+'oleo§2~ one [=

Q O T O
OOAAO
O =~ 0O =0

What's {e ’mrfoa frofd yew
s of fype [01]
P(' ') g 0(-(-0;0-(-(_

35

Near-duplicate search with Min-Hashing

¢ Suppose we would like to find all duplicates with more
than 90% similarity

¢ Apply min-hash function to all documents, and look for
candidate pairs (documents hashed to same bucket)

» How many 90%-duplicates will we find? =~ <07
o How many 90%-duplicates will we miss? & 0%

¢ How can we reduce the number of misses?

36

Reducing the “misses”
¢ Apply multiple independently random hash functions

¢ Consider candidate pair of near duplicates if at least
one of the functions hashes to same bucket

» What’ s the probability of a “miss” with k functions?

Pl mas®) = dlCc)
= /(N'S‘)Q § =i ((:())

37

A
P(miss)

— b
SiFEA; C2)-

¢ Thus, using multiple independent hash functions can
exponentially reduce probability of misses!

38

Min-hash signatures

Input matrix Signature matrix M
11(4]3 1 10110 2111211
3(12]|4 11001 211 1al1

O(1]0 1
127 1]2]1]2
6/(3]6] [0 21]0|1]|)
2|16 1 O(1]|0|1 Similarities:

1-3 24 1-2 3-4

S[[712 1101170 Col/Col| 0.75 0.75 0 O
411515 1101110 Sig/Sig | 0.67 1.00 0 O

39

Implementing min-hashing

¢ Difficult to randomly permute a data set with a billion rows

¢ Even representing a permutation of size 1079 is expensive

¢ Accessing rows in permuted order is infeasible (requires
random access)

40

Approximate min-hashing

¢ Directly represent permutation 7t through hash function h!

TI'CC) = h/[) = 0(,c.+b ma on

o Could happen that h(i)=h(j) for i # j, but this is rare for good h
¢ Note: Will use same notation for h(r) and h(C)

L(C) = aia L)
i: C[c‘)'-‘
e Suppose h(r)<h(s). Then row r appears before sin 1
o Why is this useful?

e Can store h very efficiently
¢ Allows to process data matrix row-wise..

41

P
U'I-hwl\)l—tg

Cl Q2
1 0
0 1
1 1
1 0
0 1

h(x) = x mod 5
h(1)=1, h(2)=2, h(3)=3, h(4)=4, h(5)=0

g(x) = 2x+1 mod 5
g(1)=3, g(2)=0, g(3)=2, g(4)=4, g(5)=1

| O
/V/=¢2_O

42

False positives

¢ Increasing number of hash tables reduces false
negative rate ©

e Also increases false positive rate ®

A
P(Hit) —

« s/ . "[M)

|

- : >
-1 sim(c1,c2) .,

False positives

¢ ldeally want:

p(Hit) | |

>
& Sim(C1,C2)

44

Ingenious trick

¢ Signature matrix compactly represents similarity between
documents

¢ Jaccard distance ~ I1-distance of columns
¢ Similar documents have similar signatures
¢ Naive approach: Compare any pair of columns to see if
their similar
o Compact representation = faster
e Still NA2 comparisons ®
¢ Will see how to hash columns s.t. with high probability
e return similar pairs (d(C1,C2) < g)
¢ do not return dissimilar pairs (d(C1,C2) > €)

45

Partitioning the signature matrix

I FTOWS
A per band

b bands

\ One

signature

Signature Matrix M

46

Hashing bands of M

. [Buckefs . 1

F rOWS b bands

47

Hashing the signature matrix

¢ Signature matrix M partitioned into b bands of r rows.

¢ One hash table per band, independent hash functions

¢ For each band, hash its portion of each column to its
hash table

e For purpose of analysis, let’s assume there’s no “false
collisions”

e Doesn’t affect correctness of algorithm

¢ Candidate pairs are columns that hash to the same
bucket for at least one band.

o Why is this useful?

48

Analysis of partitioning

¢ Suppose columns M1 and M2 have similarity s

M; ‘IB;,, L R

Fo- f“’"l (0 d 6 (Vhat's Tle (”m[).
+ teat Bl,; ol 32,02 collfe?

P U’[Bm‘) = b [&243) = s
—PC”\(BJ) & /Bm)\ = (—S'?\

lers collirion in 4 lowd” (4
Z m)
P re collsim in oy lomd)= (176 .
P (collisrem ta §Pwe Lo\“.,/> = (- (I—S‘m)

49

One hash function

0.8t
0.6}
r=1
b=1
0.4;
0.2
O I I I I J
0 0.2 0.4 0.6 0.8 1

Similarity

50

100 hash functions

0 0.2 0.4 0.6 0.8 1
Similarity

51

100 hash functions

N W~ 01 OO N 0O © 9=
; ; ' I I T T |

o —
|

0 01 02 03 04 05 06 07 08 009
Similarity

52

1000 hash functions

).8
).6
=1r=2 r=50
=(166600 b=2(
).4

4 /

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity

53

10000 hash functions

r=50
b=200
4
2
O | | I I ! |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Similarity

54

Implementation details

¢ Tune r and b to achieve desired similarity threshold

¢ Typically favor
o few false negatives
e more false positives

¢ Do pairwise comparisons of all resulting candidate
pairs (in main memory), to eliminate false positives

¢ Typically also compare the actual documents (needs
another pass through the data)

55

Acknowledgments

¢ Several slides adapted from the material
accompanying the textbook (Anand Rajaraman,
Stanford)

56

