

Data Mining Learning from Large Data Sets

Lecture 3 – Locality Sensitive Hashing

263-5200-00L Andreas Krause

Announcement

No class next week

Review:

Fast near neighbor search in high dimensions

Locality sensitive hashing

 Idea: Create hash function that maps "similar" items to same bucket

- Key problem: Is it possible to construct such hash functions??
 - Depends on the distance function
 - Possible for Jaccard distance!! ©
 - Some other distance functions work as well

Recall: Shingle Matrix

documents

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

shingles

$$Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Min-hashing

- Simple hash function, constructed in the following way:
- Use random permutation π to reorder the rows of the matrix
 - Must use same permutation for all columns C!!
- h(C) = minimum row number in which permuted column contains a 1

$$h(C) = h_{\pi}(C) = \min_{i:C(i)=1} \pi(i)$$

Min-hashing property

 Want that similar documents (columns) have same value of hash function (with high probability)

Turns out it holds that

$$\Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$$

Need to control false positives and misses.

Min-hash signatures

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4	
Col/Col				0	
Sig/Sig	0.67	1.00	0	0	

Hashing bands of M

One hash function

LSH more generally

- So far we have considered
 - Min-hashing for computing compact document signatures representing Jaccard similarity
 - Locality Sensitive Hashing (LSH) for decreasing false negatives and false positives
 - Let's us do duplicate detection without requiring pairwise comparisons!
- Can we generalize what we learned?
 - Other data types (e.g., real vectors → images)
 - Other distance functions (Euclidean? Cosine?)

Key insight behind LSH

LSH allows to boost the gap between similar
 (Sim(C1,C2)>s) non-similar (Sim(C1,C2)<s' for s' < s) pairs

LSH more generally

- Consider a metric space (S,d), and a family F of hash functions $h: S \rightarrow B = \{ \ldots, \times \}$
- F is called (d_1, d_2, p_1, p_2) -sensitive if

$$\forall x, y \in S : d(x, y) \le d_1 \Rightarrow \Pr[h(x) = h(y)] \ge p_1$$

$$\forall x, y \in S : d(x, y) \ge d_2 \Rightarrow \Pr[h(x) = h(y)] \le p_2$$

h drown uniformly at rondom from F

Example

Example: Jaccard-distance

Recall, we want:

$$\forall x, y \in S : d(x, y) \le d_1 \Rightarrow \Pr[h(x) = h(y)] \ge p_1$$

$$\forall x, y \in S : d(x, y) \ge d_2 \Rightarrow \Pr[h(x) = h(y)] \le p_2$$

Boosting a LS hash family

- Can we reduce false positives and false negatives (create "S-curve effect") for arbitrary LS hash functions??
- Can apply same partitioning technique!
- AND/OR construction

r-way AND of hash function

- Goal: Decrease false positives
- Convert hash family F to new family F'
- Each member of F' consists of a "vector" of r hash functions from F
- For $h = [h_1, ..., h_r]$ in F', $h(x)=h(y) \Leftrightarrow h_i(x)=h_i(y)$ for all i.
- Theorem: Suppose F is (d_1, d_2, p_1, p_2) -sensitive. Then F' is (d_1, d_2, p_1, p_2) -sensitive

b-way OR of hash function

- Goal: Decrease false negatives
- Convert hash family F to new family F'
- Each member of F' consists of a "vector" of b hash functions from F
- For $h = [h_1, ..., h_r]$ in F', $h(x) = h(y) \Leftrightarrow h_i(x) = h_i(y)$ for some i.
- Theorem: Suppose F is (d_1, d_2, p_1, p_2) -sensitive. Then F' is (d_1, d_2, p_1, p_2) -sensitive

Composing AND and OR

- Suppose we start with a (d_1,d_2,p_1,p_2) -sensitive F
- First apply r-way AND, then b-way OR
- This results in $(d_1, d_2, l-(l-p_1)^b, l-(l-p_2)^b)$ sensitive F'

- Can also reverse order of AND and OR
- This results in $(d_1,d_2,(-(-p)^b)^{\prime\prime}(-(-p)^b)^{\prime\prime})$ sensitive F'

Example

Cascading constructions

- Can also combine all previous constructions
- For example, first apply (4,4) OR-AND construction followed by a (4,4) AND-OR construction.
- Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)-sensitive family!
- How many hash functions are used?

Other examples of LS families

- So far: Jaccard distance has a LS hash family
- Several other distance functions do too
 - Cosine distance
 - Euclidean distance

LSH for Cosine Distance

- Key idea: Map points to random line
- Here, let's consider 2 dimensions (but generalizes)

If *d* < *a*, then the chance the points are in the same bucket is

- If distance $d \le \alpha/2$, P(same bucket) ≥ 1 d/a = 1/2
- If distance $d \ge 2a$, then they can end up in the same bucket only if d cos $\theta \le a$
 - $\cos \theta \le \frac{1}{2}$
 - 60 ≤ θ ≤ 90
 - This event has probability at most 1/3.
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a.
- Can boost using AND-OR constructions

LSH in MapReduce?

- LSH is well suited for MapReduce style computation!
- You'll find out how in the homework ©

LSH for nearest neighbor search

- So far we discussed the problem of finding near duplicates.
- How do we implement nearest neighbor search?

Approximate near-neighbor search

- Consider slightly different problem: approximate near neighbor search
 - Want to find any point in data set that has distance at most
 r from query
 - Don't want to return points of distance more than $(1+\varepsilon)$ r
 - Pick $(r, (1+\varepsilon) r, p,q)$ -sensitive hash family
- Preprocessing: Hash data set as in duplicate detection
- Query: Hash query in the same way
- Retrieve all candidate pairs (perhaps pick closest)

Approximate nearest neighbor search

 Can we use approximate near-neighbor search for (approximate) nearest-neighbor search?

use binary Search to find approximate heavest neighbor distonce

Course organization

Retrieval

- Given a query, find "most similar" item in a large data set
- Applications: GoogleGoggles, Shazam, ...
- Supervised learning (Classification, Regression)
 - Learn a concept (function mapping queries to labels)
 - Applications: Spam filtering, predicting price changes, ...
- Unsupervised learning (Clustering, dimension reduction)
 - Identify clusters, "common patterns"; anomaly detection
 - Applications: Recommender systems, fraud detection, ...

Learning with limited feedback

- Learn to optimize a function that's expensive to evaluate
- Applications: Online advertising, opt. UI, learning rankings, ...

Classification (intuitively)

- Want to assign data points
 - Documents
 - Queries
 - Images
 - Audio
 - ...
 - a label (spam/not-spam; topic such as sports, politics, entertainment, etc.)

Goal:

- extract rules (hypotheses) based on training examples.
- Hope that those rules generalize to previously unseen data

Document classification

- Input: Labeled data set (e.g., rep. bag-of-words) with positive (+) and negative (-) examples
- Output: Decision rule (hypothesis)

Linear classifiers

Data set $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i \in \mathbb{R}^D$, $y_i \in [t_i,t_i]$

Which linear classifier is the best one?

• Data set $(x_1,y_1),\ldots,(x_n,y_n)$

Linear classifier:

$$sign(w^Tx + b)$$

Large margin classification

Margin of confidence:

$$y_i (w^T x_i + b) = n_i$$
 $mex min y_i$
 $w_i b$

Want to maximize confidence in our prediction!

- Turns out to be the "right" thing to do
 - Larger margin → Better generalization

Nonuniqueness

So far, our notion of confidence is not yet well defined!

Review: Projection on a plane

Canonical hyperplanes

Maximizing the normalized margin

$$\max_{w,b,\gamma} \gamma$$
s.t. $(w^T x_i + b) y_i \ge \psi$

Support Vector Machines

Acknowledgments

 Several slides adapted from the material accompanying the textbook (Anand Rajaraman, Stanford)