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Announcement

¢ No class next week



Review:

Fast near neighbor search
in high dimensions



Locality sensitive hashing

¢ ldea: Create hash function that maps “similar” items

to same bucket

¢ Key problem: Is it possible to construct such hash
functions??
¢ Depends on the distance function

Hashtable |0

e Possible for Jaccard distance!! ©
¢ Some other distance functions work as well



Recall: Shingle Matrix
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Min-hashing

¢ Simple hash function, constructed in the following way:

¢ Use random permutation 1t to reorder the rows of the matrix

¢ Must use same permutation for all columns C!!

¢ h(C) = minimum row number in which permuted column
containsa l



Min-hashing property

¢ Want that similar documents (columns) have same
value of hash function (with high probability)

¢ Turns out it holds that

¢ Need to control false positives and misses.



Min-hash signatures
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One hash function
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100 hash functions
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100 hash functions
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1000 hash functions
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10000 hash functions
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LSH more generally

o So far we have considered

¢ Min-hashing for computing compact document signatures
representing Jaccard similarity

¢ Locality Sensitive Hashing (LSH) for decreasing false
negatives and false positives

¢ Let’s us do duplicate detection without requiring pairwise
comparisons!

¢ Can we generalize what we learned?

o Other data types (e.g., real vectors =2 images)
¢ Other distance functions (Euclidean? Cosine?)
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P(hash hit)

Key insight behind LSH

¢ LSH allows to boost the gap between similar
(Sim(C1,C2)>s) non-similar (Sim(C1,C2)<s’ for s’ < s) pairs
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LSH more generally

o Consider a metric space (S,d), and a family F of hash
functions h: S2B= jt.. m\j

o Fiscalled (d, d,, p, p,)-sensitive if

Vi,y € S:d(x,y) < di = Pr

Ve,y € S:d(x,y) > do = Prlh(z) =

(y)] = p1
(y)] < p2
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h
h
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P(hit)AL\_\IJ .
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Example: Jaccard-distance

Recall, we want:

Ve,y € S :d(x,y) < dy = Prlh(z) =
Ve,y € S :d(x,y) > do = Pr|lh(z) =

(y)] > p1
(¥)] < p2
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Boosting a LS hash family

o Can we reduce false positives and false negatives (create
“S-curve effect”) for arbitrary LS hash functions??

¢ Can apply same partitioning technique!
o AND/OR construction
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r-way AND of hash function

¢ Goal: Decrease false positives

¢ Convert hash family F to new family F

¢ Each member of F’ consists of a “vector” of r hash
functions from F

o For h=1[h,,..,h]in F, h(x)=h(y) < h.(x)=h(y) for all i.

» Theorem: Suppose Fis (d,,d,,p,,p,)-sensitive.
Then F’is ( d‘, olz, " , )oz"“ )-sensitive
o).

\d_L- )

(

2N
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b-way OR of hash function

¢ Goal: Decrease false negatives

¢ Convert hash family F to new family F’

o Each member of F’ consists of a “vector” of b hash
functions from F

o Forh=1[h,..,h]inF, h(x) h(y) < h.(x)=h.(y) for some i.
CoUiS‘th

» Theorem: Suppose Fis (d,,d,,p,,p,)-sensitive.
Then F’ is( Cl¢ , CIZ , (- [“f,) |- UT ”)-sensitive

pdy g
—

R b




Composing AND and OR

» Suppose we start with a (d,,d,,p,,p,)-sensitive F
¢ First apply r-way AND, then b-way OR

, , b b e o
* This results in (d,,d,, [~<{~(o('7, [~ (l—f;’)) sensitive F

o Can also reverse order of AND and OR
V- \a
* This results in (d,,d,, ([~(('~ﬁ\b) ((~[[ ~/a2)")) sensitive F’
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Example

0.9

0.8

0.7

0.6

- -=-0R-AND
— AND-OR

0.5

0.4

0.3

0.2

0.1

24



Cascading constructions

¢ Can also combine all previous constructions

o For example, first apply (4,4) OR-AND construction
followed by a (4,4) AND-OR construction.

¢ Transforms a (.2,.8,.8,.2)-sensitive family into a
(.2,.8,.9999996,.0008715)-sensitive family!

¢ How many hash functions are used?

6 =95
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Other examples of LS families

e So far: Jaccard distance has a LS hash family

o Several other distance functions do too
e Cosine distance
¢ Euclidean distance
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LSH for Cosine Distance




LSH for Euclidean distance

¢ Key idea: Map points to random line
¢ Here, let’s consider 2 dimensions (but generalizes)
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LSH for Euclidean distance

Points at
distance o If d < a, then

O\ the chance the
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LSH for Euclidean distance

Points at
distance d

Ifd >> a, 6 must
be close to 90°
for there to be

any chance points
go to the same

bucket.

Edcos@é

Bucket
width a

Randomly
chosen
line
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LSH for Euclidean distance

o If distance d < a/2, P(same bucket) >21-d/a=1/2
¢ If distance d > 2a, then they can end up in the same
bucket only if d cos 0 <a
e CcosO<W
¢« 60<0<90
¢ This event has probability at most 1/3.
¢ Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash
functions for any a.

¢ Can boost using AND-OR constructions
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LSH in MapReduce?

o LSH is well suited for MapReduce style computation!
¢ You'll find out how in the homework ©
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LSH for nearest neighbor search

¢ So far we discussed the problem of finding near
duplicates.

¢ How do we implement nearest neighbor search?
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Approximate near-neighbor search

¢ Consider slightly different problem: approximate near
neighbor search

e Want to find any point in data set that has distance at most
r from query

¢ Don’t want to return points of distance more than (1+¢) r

e Pick (r, (1+€) r, p,q)-sensitive hash family
¢ Preprocessing: Hash data set as in duplicate detection
¢ Query: Hash query in the same way
o Retrieve all candidate pairs (perhaps pick closest)
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Approximate nearest neighbor search

¢ Can we use approximate near-neighbor search for
(approximate) nearest-neighbor search?
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Course organization

¢ Retrieval
¢ Given a query, find “most similar” item in a large data set
e Applications: GoogleGoggles, Shazam, ...

¢ Supervised learning (Classification, Regression)
¢ Learn a concept (function mapping queries to labels)
e Applications: Spam filtering, predicting price changes, ...
¢ Unsupervised learning (Clustering, dimension reduction)
¢ |dentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...
¢ Learning with limited feedback

¢ Learn to optimize a function that’s expensive to evaluate

e Applications: Online advertising, opt. Ul, learning rankings, ...
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Classification (intuitively)

¢ Want to assign data points
¢ Documents
¢ Queries
¢ Images
¢ Audio

‘ LN )

a label (spam/not-spam; topic such as sports, politics,
entertainment, etc.)

¢ Goal:
¢ extract rules (hypotheses) based on training examples.

¢ Hope that those rules generalize to previously unseen data
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Document classification

A

+ +
+

Spam
’\ ++ _

Ham = .

¢ Input: Labeled data set (e.g., rep. bag-of-words) with
positive (+) and negative (-) examples

¢ Output: Decision rule (hypothesis)
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Linear classifiers

¢ Data set

(xlayl)a S (ZUn,yn)
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Which linear classifier is the best one?

e S
¢ Data set

(xlayl)a S (ZUn,yn)

¢ Linear classifier:

sign(w’ = + b)
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Large margin classification

¢ Margin of R
confidence:

X (_\J‘l;‘i*b) = n;

ch ¢

¢ Want to maximize
confidence in our
prediction!

@ Turns out to be the “right” thing to do
o Larger margin =» Better generalization
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Nonunigueness

ma;X/y g OQ A =0
w,b,y QW:K “2b =0

s.t.(waz- +b)y; >~

So far, our notion of confidence is not yet well defined!
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Review: Projection on a plane
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Canonical hyperplanes
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Maximizing the normalized margin

max vy
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