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Announcement

¢ Homework 2 out tomorrow

¢ Additional lecture on Friday 15:00 (not this week)?



Course organization

¢ Retrieval
¢ Given a query, find “most similar” item in a large data set
e Applications: GoogleGoggles, Shazam, ...
¢ Supervised learning (Classification, Regression)
¢ Learn a concept (function mapping queries to labels)
¢ Applications: Spam filtering, predicting price changes, ...
¢ Unsupervised learning (Clustering, dimension reduction)
¢ |dentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...
¢ Learning with limited feedback
¢ Learn to optimize a function that’s expensive to evaluate
e Applications: Online advertising, opt. Ul, learning rankings, ...



Document classification
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¢ Input: Labeled data set (e.g., rep. bag-of-words) with
positive (+) and negative (-) examples

¢ Output: Decision rule (hypothesis)



Linear classifiers

¢ Data set
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Why linear classification?

o Linear classification seems restrictive:
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¢ In high-dimensional settings, often works extremely well

¢ Can be trained extremely efficiently, even on massive
data

o We'll learn about the state of the art:
Support Vector Machines (SVM)



Large margin classification
(

» Want to maximize “margin” to closest example!

@ Turns out to be the “right” thing to do
o Larger margin =2 Better generalization



Large margin classification

¢ Confidence in R
example i:

yi(w' z; +b) =

¢ Intuitively, want

max min 7j;
w,b )



Nonunigueness
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So far, our notion of confidence is not yet well defined!
Need normalization!



Canonical hyperplanes
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Support Vector Machine
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¢ How can we solve this optimization?
¢ What about local minima?

e This is a convex (quadratic) program
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Convex sets

Asubset S C RY

is called convex if
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Afunction  f . RY L R

is called convex if

N oxete®d De (o) L(axelAe) XY (D) P

\\/ )/\ 1/\/\/

—

| (om vex (omcave th\(Lp,.

13



Convex optimization

¢ Given a convex function f and a convex set S

want to solve | V¢ Z(")

¢ This is called a convex optimization problem

\

¢ Often, S specified using linear inequalities

S={zxecR%: alz<b;)}

¢ Can solve such problems in polynomial time!
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Dealing with noise

min wl w + C & pstabs,

w,b

s.t.y; (w! z; +b) > 1
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Dealing with noise: Slack variables
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Dealing with massive data sets

o Are we done??
o Complexity of quadratic programming
¢ Naive implementations: jZ(:ﬁ)

» What if the data doesn’ t even fit in memory??

¢ Will see how one can reformulate the SVM
optimization problem so that one can solve it on web-
scale problems...
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¢ SVM with slack variables
min wlw+ C Z &

w,b,£>0
S.t.yi(w x; +b) Z 1—&;

¢ Equivalent formulation:
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Yet another SVM formulation
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Online classification

>

X: Classification error

¢ Data arrives sequentially
¢ Need to classify one data point at a time
¢ Use a different decision rule (lin. separator) each time

¢ Can’t remember all data points! )1



Online SVM optimization

o Keep track of hyperplane parameters w

¢ Each round

e New data point arrives

¢ Classify according to sign(wépa}t bt)

e Incur loss Zt — max((), 1 — yt(w;}rﬂft - bt))

e Update Wy and bt based on (th, yt)

o Best we could have done:
T

L* = min maX(O,l—y wlz, +b )
w:||w||s1//\; ol 7+ b)

T
o Ourregret: R = th — L

t=1
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Generally: Online convex programming

¢ Input:
o Feasibleset S C R Solue A tﬁ/‘_é()
o Starting point Wg € S s.l xe
gp 0 L S
¢ Each round tdo t
‘5-( g\l/M

o Pick new feasible point w; € S
» Receive convex function ft S — R

¢ Incur loss ft — ft(wt)

¢ Regret:

T T
e = (3 4) ~mi 3 fiw
t=1 t=1
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Online convex programming

¢ Simple update rule:

W41 = Wt — Utvft(wt)

o Veus 2V, ()

Eeil

o How well does this simple algorithm do??
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No regret algorithms
¢ An online algorithm is called no-regret if

RT/T—>O

for any sequence of functions f{,..., fr

o For SVMs, this means:

e The average error compared to solving the (expensive)
quadratic program goes to zero

¢ This is independent of how we process the data set!!!
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Regret for online convex programming

Theorem [Zinkevich ‘03]

Let f1,..., fr bean arbitrary sequence of convex
functions with feasible set S

Set Tlt — 1/\/Z

Then, the regret of online convex programming is

bounded by
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Yet another SVM formulation

miil w'w+C Y max(0,1 —y;(w' z; + b))
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Online convex programming for SVM
w1 = Projg(wy — 'V fi(wy)
| t+ s( t t V. Je (Wt )

» Feasibleset: S — {w ; HwH < _}

¢ Projection: . w
we R w f wel

. _ S
P'“a:g(w)
» Gradient: 7& (W) = o (00 1= 9e(vTx))
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Subgradients
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Subgradient for SVM

» Hinge loss: ft (w) — max((), 1 — (wat + b))
\/\-—\/—

¢ Subgradient:
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Example [Bottou]

¢ Stochastic gradient descent
¢ Online convex programming with training samples picked at
random
¢ Data set:
¢ Reuters RCV1
e 780k training examples, 23k test examples

¢ 50k dimensions

Training Time Primal cost Test Error
SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%
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