

Data Mining Learning from Large Data Sets

Lecture 4 – Large-scale supervised learning

263-5200-00L Andreas Krause

Announcement

Homework 2 out tomorrow

• Additional lecture on Friday 15:00 (not this week)?

Course organization

Retrieval

- Given a query, find "most similar" item in a large data set
- Applications: GoogleGoggles, Shazam, ...
- Supervised learning (Classification, Regression)
 - Learn a concept (function mapping queries to labels)
 - Applications: Spam filtering, predicting price changes, ...
- Unsupervised learning (Clustering, dimension reduction)
 - Identify clusters, "common patterns"; anomaly detection
 - Applications: Recommender systems, fraud detection, ...

Learning with limited feedback

- Learn to optimize a function that's expensive to evaluate
- Applications: Online advertising, opt. UI, learning rankings, ...

Document classification

- Input: Labeled data set (e.g., rep. bag-of-words) with positive (+) and negative (-) examples
- Output: Decision rule (hypothesis)

Linear classifiers

Data set $(x_1,y_1),\ldots,(x_n,y_n)$, $x_i \in \mathbb{R}^D$, $y_i \in [t_i,t_i]$

Why linear classification?

Linear classification seems restrictive:

- In high-dimensional settings, often works extremely well
- Can be trained extremely efficiently, even on massive data
- We'll learn about the state of the art:
 Support Vector Machines (SVM)

Large margin classification

- Want to maximize "margin" to closest example!
- Turns out to be the "right" thing to do
 - Larger margin
 Better generalization

Large margin classification

Confidence in example i:

$$y_i(w^T x_i + b) \equiv \eta_i$$

ullet Intuitively, want $\max\min\eta_i$

$$w,b$$
 i

Nonuniqueness

So far, our notion of confidence is not yet well defined! Need normalization!

Canonical hyperplanes

Support Vector Machine

$$\min_{w,b} w^T w$$

s.t. $y_i(w^T x_i + b) \ge 1$

- How can we solve this optimization?
- What about local minima?
- This is a convex (quadratic) program

Convex sets

A subset $\,S\subseteq\mathbb{R}^d\,$

is called convex if

$$\forall x_1 x' \in S_1 \lambda \in (0,1): \lambda x + (1-\lambda)x' \in S$$
Convex combination

(on rex

Convex functions

A function

$$f: \mathbb{R}^d \to \mathbb{R}$$

is called convex if

$$\forall x, x' \in \mathbb{R}^d, \ \exists \in [0, i] : \ f(\exists x + (i - \lambda)x') \leq \exists f(x) + (i - \lambda)f(x')$$

Convex optimization

Given a convex function f and a convex set S

- This is called a convex optimization problem

• Often, S specified using linear inequalities
$$S = \{x \in \mathbb{R}^d : a_i^T x \leq b_i\}$$

Can solve such problems in polynomial time!

Dealing with noise

$$\min_{w,b} w^T w + C \#_{\text{mistakes}}$$

$$\text{s.t.} y_i(w^T x_i + b) \ge 1$$

$$s.t.y_i(w^Tx_i + b) \ge 1$$

Dealing with noise: Slack variables

$$\min_{w,b} w^T w + C \mathcal{D}_{h_i}$$

$$\text{s.t.} y_i(w^T x_i + b) \ge 1 - \gamma_i$$

Conue!

Dealing with massive data sets

- Are we done??
- Complexity of quadratic programming
 - Naïve implementations: $\mathcal{N}(n^3)$
- What if the data doesn't even fit in memory??

 Will see how one can reformulate the SVM optimization problem so that one can solve it on webscale problems...

Hinge loss

SVM with slack variables

$$\min_{w,b,\xi \ge 0} w^T w + C \sum_{i} \xi_i$$

s.t. $y_i(w^T x_i + b) \ge 1 - \xi_i$

• Equivalent formulation:

$$\begin{cases}
5i = \begin{cases}
0 & \text{if } y_i (w^T x_i + b) \ge 1 \\
-y_i (w^T x_i + b) & \text{otherwise}
\end{cases}$$

$$= \max \left(0, 1 - y_i (w^T x_i + b)\right)$$

Hinge loss

$$\min_{w,b} \frac{w^T w + C}{\text{Margin}} = \max_{i} \left(0, 1 - y_i (w^T x_i + b)\right)$$

$$\max_{i} \left(0, 1 - \beta\right)$$

$$\max_{i} \left(0, 1 - \beta\right)$$

$$\max_{i} \left(0, 1 - \beta\right)$$

Yet another SVM formulation

$$\min_{w,b} w^T w + C \sum_{i} \max(0, 1 - y_i(w^T x_i + b))$$

(=) Mih
$$\sum_{i}$$
 wax $(0,1-y:(w^{T}x_{i}*b))$
 $5it. |w| \leq \frac{1}{\lambda}$

Online classification

X: Classification error

- Data arrives sequentially
- Need to classify one data point at a time
- Use a different decision rule (lin. separator) each time
- Can't remember all data points!

Online SVM optimization

- Keep track of hyperplane parameters w
- Each round
 - New data point arrives
 - ullet Classify according to $\operatorname{sign}(w_t^T x_t + b_t)$
 - Incur loss $\ell_t = \max(0, 1 y_t(w_t^T x_t + b_t))$
 - ullet Update $\,w_t$ and $\,b_t$ based on (x_t,y_t)
- Best we could have done:

$$L^* = \min_{w:||w|| \le 1/\lambda} \sum_{t=1}^{T} \max(0, 1 - y_t(w_t^T x_t + b_t))$$

• Our regret:
$$R_T = \sum_{t=1}^{\infty} \ell_t - L^*$$

Generally: Online convex programming

Input:

- ullet Feasible set $S \subseteq R^d$
- ullet Starting point $w_0 \in S$

- ullet Pick new feasible point $w_t \in S$
- ullet Receive convex function $\ f_t:S o\mathbb{R}$
- Incur loss

$$\ell_t = f_t(w_t)$$

Regret:

$$R_T = \left(\sum_{t=1}^T \ell_t\right) - \min_{w \in S} \sum_{t=1}^T f_t(w)$$

Online convex programming

Simple update rule:

$$w_{t+1} = w_t - \eta_t \nabla f_t(w_t)$$

• How well does this simple algorithm do??

No regret algorithms

An online algorithm is called no-regret if

$$R_T/T \rightarrow 0$$

for any sequence of functions f_1,\ldots,f_T

- For SVMs, this means:
 - The average error compared to solving the (expensive) quadratic program goes to zero
 - This is independent of how we process the data set!!!

Regret for online convex programming

Theorem [Zinkevich '03]

Let f_1, \ldots, f_T be an arbitrary sequence of convex functions with feasible set S

Set
$$\eta_t = 1/\sqrt{t}$$

Then, the regret of online convex programming is bounded by

$$R_T \le \frac{||S||^2 \sqrt{T}}{2} + \left(\sqrt{T} - \frac{1}{2}\right) ||\nabla f||^2$$

Yet another SVM formulation

$$\min_{w,b} w^T w + C \sum_{i} \max(0, 1 - y_i(w^T x_i + b))$$

$$\min_{w,b} \sum_{i} \max(0, 1 - y_i(w^T x_i + b))$$

$$\text{s.t.} ||w||_2 \le \frac{1}{\lambda}$$

Online convex programming for SVM

$$w_{t+1} = \operatorname{Proj}_S(w_t - \eta_t \nabla f_t(w_t))$$

 $w_{t+1} = \operatorname{Proj}_S \big(w_t - \eta_t \underline{\nabla f_t(w_t)} \big)$ • Feasible set: $S = \{ w: ||w|| \leq \frac{1}{\lambda} \}$

Projection:

• Projection:

$$w \in \mathbb{R}^d$$
 $Poj_S(w) = \begin{cases} w & \text{if } w \in S \\ w & \text{if } w \in S \end{cases}$

• Gradient:

 $f_t(w) = w_{tot}(0, 1 - g_t(w^T x_t))$

Subgradients

Subgradient for SVM

• Hinge loss: $f_t(w) = \max(0, 1 - y_t(w^T x_t + b))$

Subgradient:

$$\begin{aligned} |-y_{t}(w^{T}x_{t}+b)| &< 0 \\ |-$$

Example [Bottou]

- Stochastic gradient descent
 - Online convex programming with training samples picked at random
- Data set:
 - Reuters RCV1
 - 780k training examples, 23k test examples
 - 50k dimensions

	Training Time	Primal cost	Test Error
SVMLight	23,642 secs	0.2275	6.02%
SVMPerf	66 secs	0.2278	6.03%
SGD	1.4 secs	0.2275	6.02%

Error

