Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Data Mining
Learning from Large Data Sets

Lecture 5 — Large-scale
supervised learning

263-5200-00L
Andreas Krause

Announcement

@ No recitations this week

¢ No lecture next week (Easter holiday)

Course organization

¢ Retrieval
¢ Given a query, find “most similar” item in a large data set
e Applications: GoogleGoggles, Shazam, ...
¢ Supervised learning (Classification, Regression)
¢ Learn a concept (function mapping queries to labels)
¢ Applications: Spam filtering, predicting price changes, ...
¢ Unsupervised learning (Clustering, dimension reduction)
¢ |dentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...
¢ Learning with limited feedback
¢ Learn to optimize a function that’s expensive to evaluate
e Applications: Online advertising, opt. Ul, learning rankings, ...

Support Vector Machine

. 74
min w?’ w |- N
w,b s [

+ S /S
s >
S.t.y@-(wTa:?; +b)>1 L e

¢ How can we solve this optimization?
¢ What about local minima?

e This is a convex (quadratic) program

Dealing with massive data sets

o Are we done??
o Complexity of quadratic programming
¢ Naive implementations: jZ(:ﬁ)

» What if the data doesn’ t even fit in memory??
¢ Will see how one can reformulate the SVM

optimization problem so that one can solve it on web-
scale problems...

Online classification

>

X: Classification error

¢ Data arrives sequentially
¢ Need to classify one data point at a time
¢ Use a different decision rule (lin. separator) each time

¢ Can’t remember all data points!

Generally: Online convex programming

¢ Input: M
o Feasibleset S C R Solue A géé()
o Starting point Wp € S .l ye
gp 0 L S
e Each round t do t
5-(g\l/M

o Pick new feasible point w; € S
» Receive convex function ft S — R

¢ Incur loss ft — ft(wt)

¢ Regret:

Re = (3 0) -y o

t=1

Online convex programming

¢ Simple update rule:

W41 = Wt — Utvft(wt)

o Veus 2V, ()

Eeil

o How well does this simple algorithm do??

Regret for online convex programming

Theorem [Zinkevich ‘03]

Let f1,..., fr bean arbitrary sequence of convex
functions with feasible set S

Set Tlt — 1/\/E

Then, the regret of online convex programming is
bounded by

OCP for SVM formulation

10

Online convex programming for SVM
w1 = Projg(wy — 'V fi(wy)
| t+ s(t t V. Je (Wt)

» Feasibleset: S — {w ; HwH < _}

¢ Projection: . w
we R w f wel

. _ S
P'“a:g(w)
» Gradient: 7& (W) = o (00 1= 9e(vTx))

11

Subgradient for SVM

» Hinge loss: ft (w) — max((), 1 — (wat + b))
\/\-—\/—

¢ Subgradient:

1S o, (w)
|- ‘)r(WTxe*[O)éa ’ fO
L= gleTed)e | gk,

|

W = wa’g (“’e T aw[f("/f')

12

Example [Bottou]

¢ Stochastic gradient descent
¢ Online convex programming with training samples picked at
random
¢ Data set:
¢ Reuters RCV1
e 780k training examples, 23k test examples

¢ 50k dimensions

Training Time Primal cost Test Error
SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

13

0.3

0.2+

100 |

50 |

Testing cost

Training time (secs)

SGD

——

| ——

i LibLinear

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

Optimization accuracy (trainingCost-optimalTrainingCost)

14

Average Test Loss

04 -
0.35 |
03 .
0.25 +
02 |

015 |

stochastic

Subsampling

n=10000

—

n=30000

| n=100000 | n=781265

n=300000 |

0.1
0.001

0.01

0.1

100 1000

Time (seconds)

15

State of the art;: PEGASQOS

INPUT: training set S = {(x1,%1),---, (Xm,ym)},
Regularization parameter A,
Number of iterations T
INITIALIZE: Choose w1 s.t. [[w1] < 1/VA
FOR t=1,2,...,T
Choose A; C S
A;I_ = {(x,y) € A¢ : y{w,x) < 1}

— I
VIS AW 4] 2 gyeaf Y

1
m =/¥x

/!
W, = Wt — MtV

i 1/VA
Wi = Min {1, W] } W

OUTPUT: W41

16

Performance for PEGASQOS

o Theorem [Shalev-Shwartz et al. ‘07]:

¢ Run-time required for Pegasos to find €-accurate solution
with probability at least 1-0:

See (oq{b'\) J u.',w'.l
fr ek yx ((A10B5) O/i)
\e AE

¢ Depends on S;%& 1L

e number of dimensions d _ J. N

o “difficulty” of problem (A and ¢) L‘“"’g" A
e Does not depi:r;d on #examples 2 Sl Magn W

~ R *

+

T —

' Veary "'—31%{" “Cord “ 25 lov 17

Difference between PEGASOS and

e Uses batches of training examples
=>» empirically more efficient

e Uses «strongly convex» loss functions
=» improved convergence rate, and better empirical
performance

e Only guaranteed to work in the stochastic setting
(i.e., can’t handle arbitrary ordering of data)

18

Dealing with massive data

¢ Online convex programming lets one train an SVM,
processing one data point at a time

e No need to store data in memory
e Order doesn’t matter (for general OCP)!

¢ What about truly massive data?
e Streaming 1 TB ~4-5 hours

¢ Can we do parallel processing in data centers?
¢ Map reduce for SVM??

19

Parallel online learning

¢ Various different approaches

Zinkevich et al "10]

Algorithm Latency tolerance | MapReduce | Network IO | Scalability
Distributed subgradient [3, 9] moderate yes high linear
Distributed convex solver [7] high yes low unclear
Multicore stochastic gradient [51 | low no n.a. linear
Parallel stochastic gradient high yes low linear

descent [Zinkevich ‘10]

¢ Still active area of research

20

Parallel stochastic gradient descent
[Zinkevich et al “10]

12T:ft g"_/

min A Jw||* + T

¢ Randomly partition data set to k machines
e Each machine runs SGD independently, produces w;

1 k
w = — w;

¢ How well does this algorithm do?

¢ After T iterations, compute

e Does parallelism help?
21

Parallel stochastic gradient descent
[Zinkevich et al “10]

22

Parallel stochastic gradient descent

[Zinkevich et al “10]

Theorem: Suppose each of the k machines runs for

r=a(55)
Then: E| error | SO(&:(\/% | 1))

1
Parallelization helps, but only if £ = O(X)

The “more difficult” the learning problem (the smaller A),
the more parallelization helps!)3

Performance of parallel online SGD

[Zinkevich et al ‘10]

3.5

v—¥ 1 Machines
& -o 10 Machines
e e 100 Machines |

3.0

N
u
T

Y
g

Relative objective function value
N
=)

1.0

0'50 200 400 600 800 1000 12‘00 1400

Number of trainining instances per machine (thousands)

24

Summary so far

¢ Support Vector Machines
¢ State of the art linear classifier
¢ Requires solving convex program

¢ Online convex programming

¢ Simple, online algorithm for approximately minimizing
additive loss functions

e Only require (sub-)gradients and reprojection
¢ Stochastic gradient descent

¢ Online convex programming in random order

¢ Parallelized stochastic gradient descent

o Compute gradients independently, then average

¢ Amount of effective parallelism depends on “hardness” of
problem 25

¢ Dealing with multiple classes
e Linear regression

o Nonlinear classification / regression

More results on supervised learning

¢ Feature selection

26

Feature selection

¢ In many high-dimensional problems, we may prefer
“sparse” solutions: sign(w” = + b)

where w contains only few nonzero entries)

¢ Reasons:

¢ Interpretability (would like to “understand” the classifier,
identify important variables)

¢ Generalization (simpler models may generalize better)

e Storage / computation (don’t need to store / sum data for O
coefficients...)

27

Feature selection

¢ Suppose we would like to identify top k features

¢ Approach 1
¢ Try out all sets of at most k variables
¢ Fit a classifier to each set, ignoring the non-selected variables
¢ Pick the best set
¢ Problem?

¢ Approach 2

¢ Greedily select the features: Add one at a time to maximize
improvement in accuracy

¢ Problem?

¢ ldeally: Solve classification and feature selection in one

fell-swoop!
28

Sparsity enforcing regularizers

O
» Before: [(w(('zl =S) Vc‘l

e Support vector machine Ce

min A||wl[3 + Y max(0,1 — y;(w” z; + b))

w,b

e Uses Hw||2 to control the weights

L

D
» Slight modification: replace ||w]|2 by ||w||1 = ﬁ vl
o L1-SVM o
in \ 2 0,1 —yj(wz; +b

¢ This alternative penalty encourages coefficients to be
exactly O =» ignores those features! 29

Feature selection with L1-SVM
[Zhu et al NIPS ‘03]

06 08

M4

0.2

0.0

30

llustration of |1-regularization

]

M W),
— //‘//Sz%, ‘9; \4;:((?,
~ &
—* -~
\Wﬂ i
¥
V4
C ' // \\ﬁy

31

» Data: [Zhu et al NIPS ‘03]

¢ 38 train, 34 test data from a DNA microarray classification
experiment (leukemia diagnosis)

e 7129 dimensions

Method CV Error Test Error # of Genes
2-norm SVM UR 2/38 3/34 22
2-norm SVM RFE 2/38 1/34 31
1-norm SVM 2/38 2/34 an

32

Online L1-SVM

¢ Can solve L1-SVM using online convex programming

Igiil max(0,1 — y;(w! z; + b)) st [|Jw|]; < %
g N—
o Subgradient: 5
¢ calculation stays the same as in SVM!
» Reprojection: - ’ @
» Need to solve: W

Proye (W) - aspes Nuw-wil,

v 'eS

33

More results on supervised learning

o Feature selection

¢ Dealing with multiple classes
¢ Regression

¢ Nonlinear methods

34

Dealing with multiple classes

35

One-vs-all

k;e.w‘_x. Lb

c ¢ c
¢ Solve c SVMs, one for
each class

¢ Positive examples:
all points from class |

¢ Negative examples
all other points

o Classify using the |
SVM with largest margin |

o Problems?

¢ ldeally want to optimize all SVMs at the same time
36

Multi-class SVM

min » wlywe) +C Y&
Y)

¢ Can be solved using same techniques as single-class SVM
¢ Multi-class hinge loss:

LW (x, y)) = Ter[%fa\){(y} E;E_W/\x)yg_‘F (WX)T]L

/wch(-.?-,D

37

More results on supervised learning

o Feature selection

¢ Dealing with multiple classes
¢ Regression

¢ Nonlinear methods

38

Regression

¢ So far, our goal was to predict a discrete label

¢ In many problems, we need to predict a real-valued
output

y = f(x;w) + noise

o E.g.
¢ Predict grade based on #homeworks solved
¢ Predict flight delay at one airport given delays at other airports

‘ LN)

39

Linear regression

¢ Given (:El, yl), s ooy (xna yn)

T .
o Assume: Y; = W x; + noise

¢ To optimize w need to quantify goodness of fit

&)

40

e [VET=R]SS

¢ Want to solve

= arg mm g —w! a:,,,

¢ Closed form solution: | w* = XTX)—
: 3 /
o Complexity? /Z(D)m) DxD
G‘I-R 'R = R

¢ Intractable for large # of dimensions!

¢ Will see how we can efficiently compute with OCP!
41

