

Data Mining Learning from Large Data Sets

Lecture 5 – Large-scale supervised learning

263-5200-00L Andreas Krause

Announcement

No recitations this week

No lecture next week (Easter holiday)

Course organization

Retrieval

- Given a query, find "most similar" item in a large data set
- Applications: GoogleGoggles, Shazam, ...
- Supervised learning (Classification, Regression)
 - Learn a concept (function mapping queries to labels)
 - Applications: Spam filtering, predicting price changes, ...
- Unsupervised learning (Clustering, dimension reduction)
 - Identify clusters, "common patterns"; anomaly detection
 - Applications: Recommender systems, fraud detection, ...

Learning with limited feedback

- Learn to optimize a function that's expensive to evaluate
- Applications: Online advertising, opt. UI, learning rankings, ...

Support Vector Machine

$$\min_{w,b} w^T w$$

s.t. $y_i(w^T x_i + b) \ge 1$

- How can we solve this optimization?
- What about local minima?
- This is a convex (quadratic) program

Dealing with massive data sets

- Are we done??
- Complexity of quadratic programming
 - Naïve implementations: $\mathcal{N}(n^3)$
- What if the data doesn't even fit in memory??

 Will see how one can reformulate the SVM optimization problem so that one can solve it on webscale problems...

Online classification

X: Classification error

- Data arrives sequentially
- Need to classify one data point at a time
- Use a different decision rule (lin. separator) each time
- Can't remember all data points!

Generally: Online convex programming

Input:

- ullet Feasible set $S \subseteq R^d$
- ullet Starting point $w_0 \in S$

- ullet Pick new feasible point $\,u\,$
- ullet Receive convex function $\ f_t:S o\mathbb{R}$
- Incur loss

$$w_t \in S$$

$$\ell_t = f_t(w_t)$$

Regret:

$$R_T = \left(\sum_{t=1}^T \ell_t\right) - \min_{w \in S} \sum_{t=1}^T f_t(w)$$

Online convex programming

Simple update rule:

$$w_{t+1} = w_t - \eta_t \nabla f_t(w_t)$$

• How well does this simple algorithm do??

Regret for online convex programming

Theorem [Zinkevich '03]

Let f_1, \ldots, f_T be an arbitrary sequence of convex functions with feasible set S

Set
$$\eta_t = 1/\sqrt{t}$$

Then, the regret of online convex programming is bounded by

$$R_T \le \frac{||S||^2 \sqrt{T}}{2} + \left(\sqrt{T} - \frac{1}{2}\right) ||\nabla f||^2$$

additional ploss in accuracy due to online setting
$$\frac{RT}{T} = O(\frac{TT}{T}) = O(\frac{T}{T}) > 0$$

OCP for SVM formulation

$$\min_{w,b} \sum_{i=1}^{N} \max(0, 1 - y_i(w^T x_i + b))$$

$$\text{s.t.} ||w||_2 \le \frac{1}{\lambda}$$

Online convex programming for SVM

$$w_{t+1} = \operatorname{Proj}_S(w_t - \eta_t \nabla f_t(w_t))$$

 $w_{t+1} = \operatorname{Proj}_S \big(w_t - \eta_t \underline{\nabla f_t(w_t)} \big)$ • Feasible set: $S = \{ w: ||w|| \leq \frac{1}{\lambda} \}$

Projection:

• Projection:

$$w \in \mathbb{R}^d$$
 $Poj_S(w) = \begin{cases} w & \text{if } w \in S \\ w & \text{if } w \in S \end{cases}$

• Gradient:

 $f_t(w) = w_{tot}(0, 1 - g_t(w^T x_t))$

Subgradient for SVM

• Hinge loss: $f_t(w) = \max(0, 1 - y_t(w^T x_t + b))$

Subgradient:

$$\begin{aligned} |-y_{t}(w^{T}x_{t}+b)| & = -y_{t}(w^{T}x_{t}+b) > 0 \\ |-y_{t}(w^{T}x_{t}+b)| & = -y_{t}(w^{T}x_{t}+b) = -y_{t}(w^{T}x_{t}+b) \end{aligned}$$

$$W_{t+1} = Pros_{s}(w_{t} - y_{t}) + y_{t}(w_{t})$$

12

Example [Bottou]

- Stochastic gradient descent
 - Online convex programming with training samples picked at random
- Data set:
 - Reuters RCV1
 - 780k training examples, 23k test examples
 - 50k dimensions

	Training Time	Primal cost	Test Error
SVMLight	23,642 secs	0.2275	6.02%
SVMPerf	66 secs	0.2278	6.03%
SGD	1.4 secs	0.2275	6.02%

Error

Subsampling

Average Test Loss

State of the art: PEGASOS

Performance for PEGASOS

- Theorem [Shalev-Shwartz et al. '07]:
 - Run-time required for Pegasos to find ϵ -accurate solution with probability at least 1- δ :

for details
$$O^*$$
 $\left(\frac{d\log\frac{1}{\delta}}{\lambda\varepsilon}\right) = O(\frac{d}{\lambda\varepsilon})$

- Depends on
 - number of dimensions d
 - "difficulty" of problem (λ and ϵ)
- Does not depend on #examples n

"easy" -> fast

Small it margin on

17

Difference between PEGASOS and standard OCP / SGD

- Uses batches of training examples
 - empirically more efficient
- Uses «strongly convex» loss functions
 - → improved convergence rate, and better empirical performance
- Only guaranteed to work in the stochastic setting (i.e., can't handle arbitrary ordering of data)

Dealing with massive data

- Online convex programming lets one train an SVM, processing one data point at a time
 - No need to store data in memory
 - Order doesn't matter (for general OCP)!
- What about truly massive data?
 - Streaming 1 TB ~4-5 hours
- Can we do parallel processing in data centers?
 - Map reduce for SVM??

Parallel online learning

Various different approaches [Zinkevich et al '10]

Algorithm	Latency tolerance	MapReduce	Network IO	Scalability
Distributed subgradient [3, 9]	moderate	yes	high	linear
Distributed convex solver [7]	high	yes	low	unclear
Multicore stochastic gradient [5]	low	no	n.a.	linear
Parallel stochastic gradient	high	yes	low	linear
descent [Zinkevich '10]				

Still active area of research

Parallel stochastic gradient descent

[Zinkevich et al '10]

"Data parallel" method for solving

$$\min_{w} \lambda ||w||^{2} + \frac{1}{T} \sum_{t=1}^{T} f_{t}(w)$$

- Randomly partition data set to k machines
- ullet Each machine runs SGD independently, produces w_i
- After T iterations, compute

$$w = \frac{1}{k} \sum_{i=1}^{k} w_i$$

- How well does this algorithm do?
- Does parallelism help?

Parallel stochastic gradient descent

[Zinkevich et al '10]

Parallel stochastic gradient descent

[Zinkevich et al '10]

Theorem: Suppose each of the *k* machines runs for

$$T = \Omega\left(\frac{\log\frac{k\lambda}{\varepsilon}}{\varepsilon\lambda}\right)$$

Then:
$$\mathbb{E}[\text{ error }] \leq \mathcal{O}\Big(\varepsilon \big(\frac{1}{\sqrt{k\lambda}} + 1\big)\Big)$$

Parallelization helps, but only if $k = \mathcal{O}\left(\frac{1}{\gamma}\right)$

The "more difficult" the learning problem (the smaller λ), the more parallelization helps!

Performance of parallel online SGD

[Zinkevich et al '10]

Summary so far

- Support Vector Machines
 - State of the art linear classifier
 - Requires solving convex program
- Online convex programming
 - Simple, online algorithm for approximately minimizing additive loss functions
 - Only require (sub-)gradients and reprojection
- Stochastic gradient descent
 - Online convex programming in random order
- Parallelized stochastic gradient descent
 - Compute gradients independently, then average
 - Amount of effective parallelism depends on "hardness" of problem

More results on supervised learning

- Feature selection
- Dealing with multiple classes
- Linear regression
- Nonlinear classification / regression

Feature selection

• In many high-dimensional problems, we may prefer "sparse" solutions: $\operatorname{sign}(w^Tx+b)$

where w contains only few nonzero entries)

Reasons:

- Interpretability (would like to "understand" the classifier, identify important variables)
- Generalization (simpler models may generalize better)
- Storage / computation (don't need to store / sum data for 0 coefficients...)

Feature selection

- Suppose we would like to identify top k features
- Approach 1
 - Try out all sets of at most k variables
 - Fit a classifier to each set, ignoring the non-selected variables
 - Pick the best set
 - Problem?
- Approach 2
 - Greedily select the features: Add one at a time to maximize improvement in accuracy
 - Problem?
- Ideally: Solve classification and feature selection in one fell-swoop!

Sparsity enforcing regularizers

- Before:
 - Support vector machine

$$\min_{w,b} \lambda ||w||_2^2 + \sum_i \max(0, 1 - y_i(w^T x_i + b))$$

- ullet Uses $||w||_2$ to control the weights
- Slight modification: replace $||w||_2$ by $||w||_1 = \sum_{i \in I} |w_i|$
 - L1-SVM

$$\min_{w,b} \lambda ||w||_{1}^{2} + \sum_{i} \max(0, 1 - y_{i}(w^{T}x_{i} + b))$$

 This alternative penalty encourages coefficients to be exactly 0 → ignores those features!

Feature selection with L1-SVM

[Zhu et al NIPS '03]

Illustration of l1-regularization

Experiment

Data:

[Zhu et al NIPS '03]

- 38 train, 34 test data from a DNA microarray classification experiment (leukemia diagnosis)
- 7129 dimensions

Method	CV Error	Test Error	# of Genes	
2-norm SVM UR	2/38	3/34	22	
2-norm SVM RFE	2/38	1/34	31	
1-norm SVM	2/38	2/34	17)	

Online L1-SVM

Can solve L1-SVM using online convex programming

$$\min_{w,b} \sum_{i} \max(0, 1 - y_i(w^T x_i + b)) \quad \text{s.t. } ||w||_1 \le \frac{1}{\lambda}$$

- Subgradient:
 - calculation stays the same as in SVM!
- Reprojection:
 - Need to solve:

More results on supervised learning

- Feature selection
- Dealing with multiple classes
- Regression
- Nonlinear methods

Dealing with multiple classes

One-vs-all

ye. w. Tx: -be

- Solve c SVMs, one for each class
 - Positive examples: all points from class I
 - Negative examples all other points
- Classify using the
 SVM with largest margin
- Problems?

Ideally want to optimize all SVMs at the same time

Multi-class SVM

$$\min_{w,b,\xi} \sum_{y} w_{(y)}^{T} w_{(y)} + C \sum_{i} \xi_{i}$$
s.t.
$$w_{(y_{i})}^{T} x_{i} + b_{(y_{i})} \ge w_{(y')}^{T} x_{i} + b_{(y')} + 1 - \xi_{j}$$

- Can be solved using same techniques as single-class SVM
- Multi-class hinge loss:

$$\ell(W; (\mathbf{x}, y)) = \max_{r \in [k] \setminus \{y\}} \left[1 - (W\mathbf{x})_y + (W\mathbf{x})_r \right]_+$$

More results on supervised learning

- Feature selection
- Dealing with multiple classes
- Regression
- Nonlinear methods

Regression

- So far, our goal was to predict a discrete label
- In many problems, we need to predict a real-valued output

$$y = f(x; w) + noise$$

- E.g.:
 - Predict grade based on #homeworks solved
 - Predict flight delay at one airport given delays at other airports

• ...

Linear regression

• Given $(x_1,y_1),\ldots,(x_n,y_n)$

• Assume: $y_i = w^T x_i + noise$

To optimize w need to quantify goodness of fit

Square loss

Want to solve

$$w^* = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2$$

• Closed form solution:
$$w^* = (X^T X)^{-1} X^T y$$

- Intractable for large # of dimensions!
- Will see how we can efficiently compute with OCP!