#### Course organization

#### Retrieval

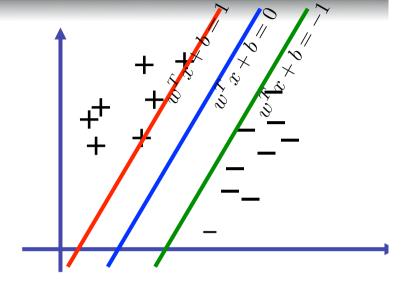
- Given a query, find "most similar" item in a large data set
- Applications: GoogleGoggles, Shazam, ...
- Supervised learning (Classification, Regression)
  - Learn a concept (function mapping queries to labels)
  - Applications: Spam filtering, predicting price changes, ...
- Unsupervised learning (Clustering, dimension reduction)
  - Identify clusters, "common patterns"; anomaly detection
  - Applications: Recommender systems, fraud detection, ...

#### Learning with limited feedback

- Learn to optimize a function that's expensive to evaluate
- Applications: Online advertising, opt. UI, learning rankings, ...

## Support Vector Machine

$$\min_{w,b} w^T w$$
  
s.t. $y_i(w^T x_i + b) \ge 1$ 



- How can we solve this optimization?
- What about local minima?
- This is a convex (quadratic) program

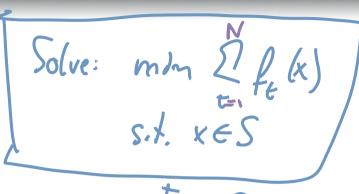
# Generally: Online convex programming

#### Input:

- ullet Feasible set  $S \subseteq R^d$
- ullet Starting point  $w_0 \in S$



- ullet Receive convex function  $f_t:S o\mathbb{R}$
- Incur loss
- Update:



$$f_t \cdot S \to \mathbb{R}$$

$$\ell_t = f_t(w_t)$$

$$w_{t+1} = \operatorname{Proj}_{S}(w_{t} - \eta_{t} \nabla f_{t}(w_{t}))$$

Regret:

$$R_T = \left(\sum_{t=1}^T \ell_t\right) - \min_{w \in S} \sum_{t=1}^T f_t(w)$$

# Regret for online convex programming

#### Theorem [Zinkevich '03]

Let  $f_1, \ldots, f_T$  be an arbitrary sequence of convex functions with feasible set S

Set 
$$\eta_t = 1/\sqrt{t}$$

Then, the regret of online convex programming is bounded by

$$R_T \le \frac{||S||^2 \sqrt{T}}{2} + \left(\sqrt{T} - \frac{1}{2}\right) ||\nabla f||^2$$

additional ploss in accuracy due to online setting
$$\frac{RT}{T} = O(\frac{TT}{T}) = O(\frac{T}{T}) > 0$$

# More results on supervised learning

- Feature selection
- Dealing with multiple classes
- Regression
- Nonlinear methods

#### Regression

- So far, our goal was to predict a discrete label
- In many problems, we need to predict a real-valued output

$$y = f(x; w) + noise$$

- E.g.:
  - Predict grade based on #homeworks solved
  - Predict flight delay at one airport given delays at other airports

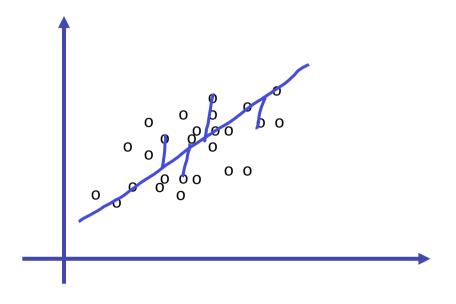
**...** 

# Linear regression

• Given  $(x_1,y_1),\ldots,(x_n,y_n)$ 

• Assume:  $y_i = w^T x_i + noise$ 

To optimize w need to quantify goodness of fit

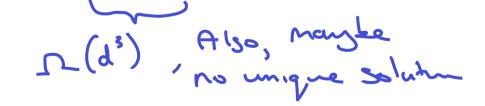


Want to solve

Square loss 
$$\text{Want to solve} \qquad \underset{i=1}{\overset{n}{\times_i}} \in \mathbb{R}^n, \quad \underset{i=1}{\overset{x_i^T}{\times_i}} \in \mathbb{R}^{n \times d}$$

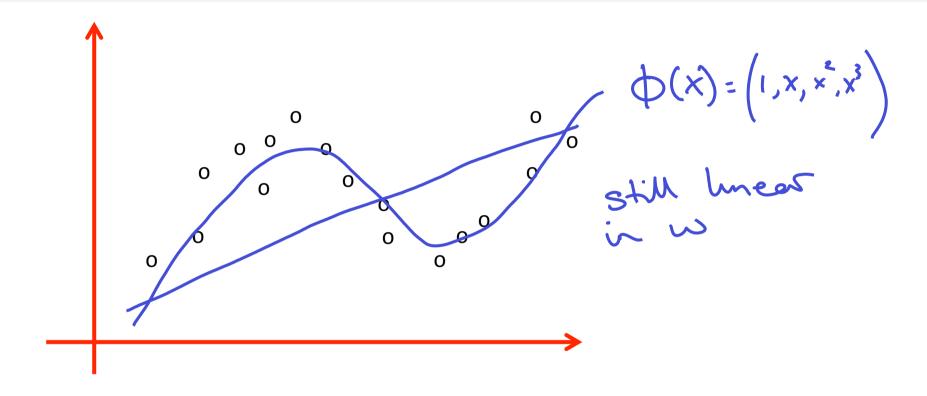
• Closed form solution: 
$$w^* = (X^T X)^{-1} X^T y$$

Complexity?



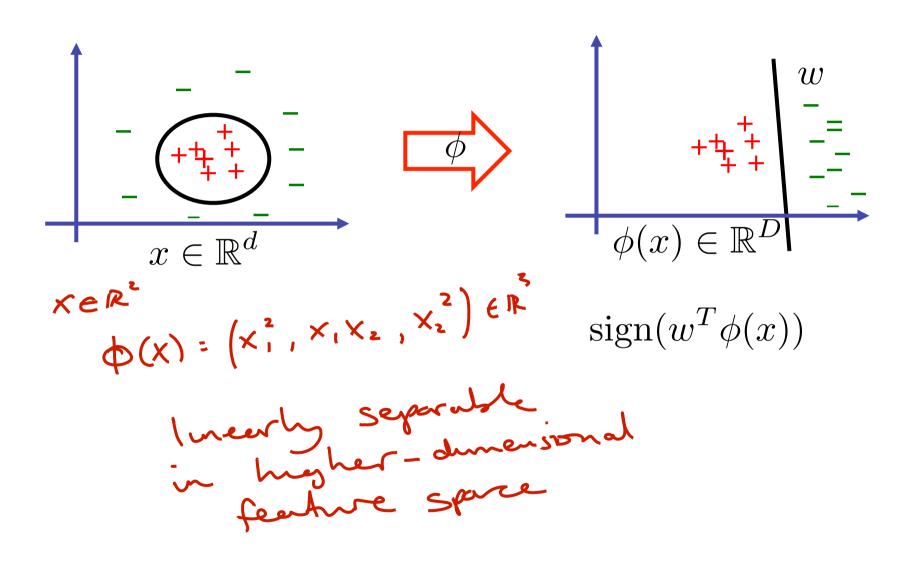
- Intractable for large # of dimensions!
- Will see how we can efficiently compute with OCP!

# Learning non-linear functions

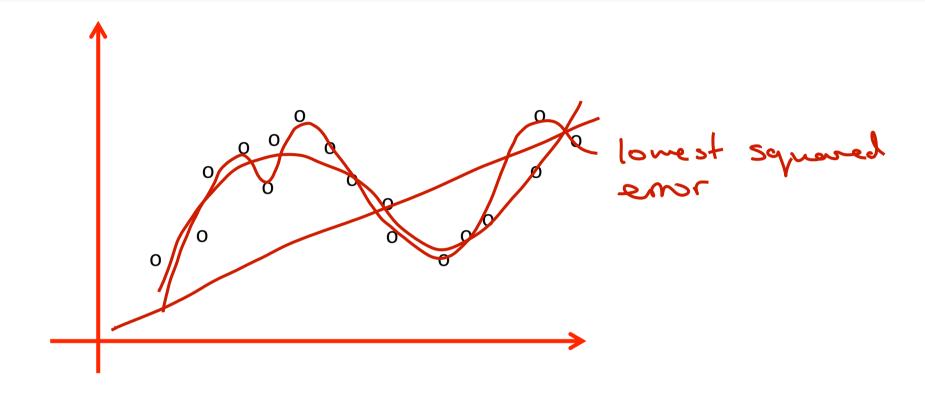


Key insight: Can learn nonlinear functions using linear methods! Works for classification too!

# Solving nonlinear problems



# Model selection in regression



Suppose we consider polynomials. Which degree should we choose?

#### Regularization

- When learning complex / high dimensional functions, need to control the complexity of the model
  - In practice, this means ensuring that weights w are small
- This process is called regularization

## Regularized regression

• Ridge regression:

$$w^* = \arg\min_{w} (||w||_2^2) + \sum_{i=1}^n (y_i - w^T x_i)^2$$

Closed form solution:

m solution: ensures a unique soliulu 
$$w^* = (X^TX + \lambda I)^{-1}X^Ty$$

Shrinks weights of 'unimportant' variables.

## Regularized regression

L1-regularized regression – "Lasso":

$$w^* = \arg\min_{w} \lambda ||w||_1 + \sum_{i=1}^{n} (y_i - w^T x_i)^2$$

In general, no closed form solution.

If 
$$X^TX = I$$
 solution
$$W^* = Sign(w)(W) + W^*$$

#### More general loss functions

 A large fraction of methods in supervised learning can be reduced to optimization problems of the form

$$w^* = \arg\min_{w} \lambda ||w|| + \sum_{i=1}^{n} \ell(y_i; x_i, w_i)$$

- Example loss functions
  - Hinge loss (SVM)
  - Multi-class hinge loss
  - Log loss (next homework!)
  - Square loss
  - ε-sensitive loss

• ...

# Solving regularized learning problems

Reduce to online convex programming:

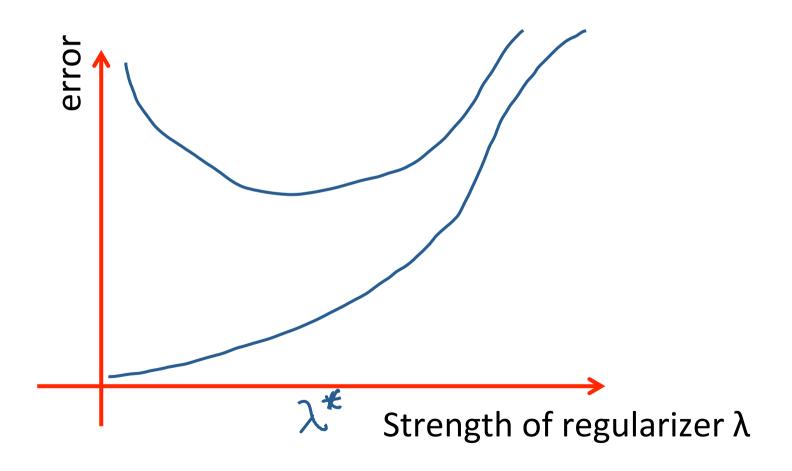
$$w_{t+1} = \operatorname{Proj}_{S}(x_{t} - \eta_{t} \nabla \ell(y_{t}; x_{t}, w_{t}))$$

- Gradient computation specific to loss function
- Reprojection: Need to solve

$$\arg\min_{w'\in S}\|w'-w_t\|_2$$

# Choosing the right regularizer

• How should we choose the regularization parameter?



#### Cross-validation

- May overfit if we optimize for fixed training set!
- Remedy: Cross-validation



- Split data set into k "folds"
- For each possible regularization parameter setting  $\lambda$ :
  - For i = 1:k
    - Train on all but i-th fold; calculate error E<sub>i</sub>
  - Estimate generalization error for param.  $\lambda$  as  $\frac{1}{k}\sum E_k$

#### Aside: Cross-validation

How to choose k? 5, 10...

$$K = n(1 - \frac{1}{\log n - 1})$$

 Then cross-validation is equivalent to the Bayesian Information Criterion

$$BIC = -2\log\ell + m\log n$$

- CV penalises the degrees of freedom.
- These results only apply for linear models with squared error loss.

#### Aside: Dual formulation of SVM

• Primal form: 
$$\min_{w,b,\xi\geq 0} w^T w + C \sum_i \xi_i$$
 s.t. $y_i(w^T x_i + b) \geq 1 - \xi_i$ 

#### Using Lagrange multipliers:

$$\min_{w,b,\xi\geq 0} \max_{\alpha} \underset{\boldsymbol{\lambda}}{w^T} w + C \sum_i \xi_i - \sum_i \alpha_i [y_i(w^Tx_i + b) - 1 + \xi_i] - \sum_i \lambda_i \xi_i$$

• Dual form:

$$\frac{\partial L}{\partial b} = 0 \rightarrow \sum_{i} \alpha_{i} y_{i}^{*} = 0$$

$$\frac{\partial L}{\partial w} = 0 \rightarrow w = \sum_{i} \alpha_{i} y_{i}^{*} \times i$$

$$\frac{\partial L}{\partial w} = 0 \rightarrow C - \alpha_{i} - \lambda_{i} = 0$$

$$\frac{\partial L}{\partial w} = 0 \rightarrow C - \alpha_{i} - \lambda_{i} = 0$$

$$\frac{\partial L}{\partial w} = 0 \rightarrow C - \alpha_{i} - \lambda_{i} = 0$$

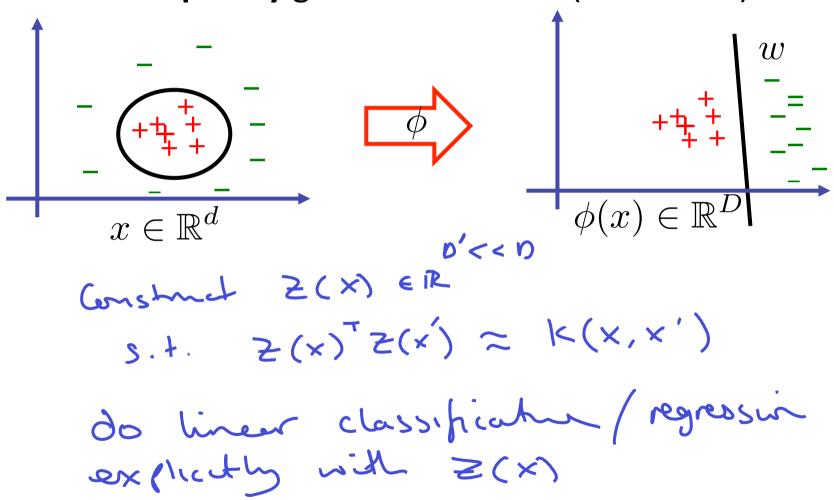
# Aside: The "Kernel Trick"

- Standard lesson in Machine Learning:
  - Can solve linear problem in feature space implicitly using inner products only  $\times \in \mathbb{R}^2$   $\phi(x) = (x_1^2, 2x_1x_2, x_2^2)$
- Example: Dual formulation of SVM  $\phi(x)^{T}\phi(x') = (x^{T}x')^{T}$

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$
 s.t.  $0 \le \alpha_i \le C$  and  $\sum_{i=1}^{N} \alpha_i y_i = 0$  
$$w = \sum_{i} \alpha_i y_i \phi(x_i)$$
 have to maintain. Can we use this for large data??

#### "Inverse Kernel Trick" [Rahimi, Recht, NIPS '07]

Idea: Explicitly generate low-dim (nonlinear!) features



#### Random Fourier Features [RR NIPS'07]

#### Algorithm 1 Random Fourier Features.

**Require:** A positive definite shift-invariant kernel  $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$ .

**Ensure:** A randomized feature map  $\mathbf{z}(\mathbf{x}) : \mathcal{R}^d \to \mathcal{R}^{2D}$  so that  $\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y}) \approx k(\mathbf{x} - \mathbf{y})$ .

Compute the Fourier transform p of the kernel k:  $p(\omega) = \frac{1}{2\pi} \int e^{-j\omega'\Delta} k(\Delta) d\Delta$ .

Draw D iid samples  $\omega_1, \dots, \omega_D \in \mathcal{R}^d$  from p.

Let 
$$\mathbf{z}(\mathbf{x}) \equiv \sqrt{\frac{1}{D}} \left[ \cos(\omega_1' \mathbf{x}) \cdots \cos(\omega_D' \mathbf{x}) \sin(\omega_1' \mathbf{x}) \cdots \sin(\omega_D' \mathbf{x}) \right]'$$
.

| Kernel Name | $k(\Delta)$                     | $p(\omega)$                                              |
|-------------|---------------------------------|----------------------------------------------------------|
| Gaussian    | $e^{-rac{\ \Delta\ _2^2}{2}}$  | $(2\pi)^{-rac{D}{2}}e^{-rac{\ \omega\ _2^2}{2}}$       |
| Laplacian   | $e^{-\ \Delta\ _1}$             | $\prod_d rac{1}{\pi(1+\omega_d^2)} \ e^{-\ \Delta\ _1}$ |
| Cauchy      | $\prod_d rac{2}{1+\Delta_d^2}$ | $e^{-\ \Delta\ _1}$                                      |

#### Performance of random features

**Claim 1** (Uniform convergence of Fourier features). Let  $\mathcal{M}$  be a compact subset of  $\mathcal{R}^d$  with diameter diam( $\mathcal{M}$ ). Then, for the mapping  $\mathbf{z}$  defined in Algorithm 1, we have

$$\Pr\left[\sup_{x,y\in\mathcal{M}}|\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y})-k(\mathbf{x},\mathbf{y})|\geq\epsilon\right]\leq 2^8\left(\frac{\sigma_p\operatorname{diam}(\mathcal{M})}{\epsilon}\right)^2\exp\left(-\frac{D\epsilon^2}{4(d+2)}\right),$$

where  $\sigma_p^2 \equiv E_p[\omega'\omega]$  is the second moment of the Fourier transform of k. Further,  $\sup_{x,y\in\mathcal{M}}|\mathbf{z}(\mathbf{x})'\mathbf{z}(\mathbf{y})-k(\mathbf{y},\mathbf{x})|\leq \epsilon$  with any constant probability when  $D=\Omega\left(\frac{d}{\epsilon^2}\log\frac{\sigma_p\operatorname{diam}(\mathcal{M})}{\epsilon}\right)$ .

 Solving linear SVM on explicit (random) features provably "almost the same" as solving non-linear SVM

#### Performance of random features [RR '07]

| Dataset                      | Fourier+LS | Binning+LS | CVM                | Exact SVM                       |
|------------------------------|------------|------------|--------------------|---------------------------------|
| CPU                          | 3.6%       | 5.3%       | 5.5%               | 11%                             |
| regression                   | 20 secs    | 3 mins     | 51 secs            | 31 secs                         |
| 6500 instances 21 dims       | D = 300    | P = 350    |                    | ASVM                            |
| Census                       | 5%         | 7.5%       | 8.8%               | 9%                              |
| regression                   | 36 secs    | 19 mins    | 7.5 mins           | 13 mins                         |
| 18,000 instances 119 dims    | D = 500    | P = 30     |                    | SVMTorch                        |
| Adult                        | 14.9%      | 15.3%      | 14.8%              | 15.1%                           |
| classification               | 9 secs     | 1.5 mins   | 73 mins            | 7 mins                          |
| 32,000 instances 123 dims    | D = 500    | P = 30     |                    | $\mathrm{SVM}^{\mathrm{light}}$ |
| Forest Cover                 | 11.6%      | 2.2%       | 2.3%               | 2.2%                            |
| classification               | 71 mins    | 25 mins    | 7.5 hrs            | 44 hrs                          |
| 522,000 instances 54 dims    | D = 5000   | P = 50     |                    | libSVM                          |
| KDDCUP99 (see footnote)      | 7.3%       | 7.3%       | 6.2% (18%)         | 8.3%                            |
| classification               | 1.5 min    | 35 mins    | 1.4 secs (20 secs) | < 1 s                           |
| 4,900,000 instances 127 dims | D = 50     | P = 10     |                    | SVM+sampling                    |

 Linear SVM/Regression on random features outperforms nonlinear methods

#### Summary

- Online convex programming is a natural approach to solve regularized learning problems
- Can be parallelized (to some extent)
- Flexible choice of loss function and regularizer gives rise to many useful methods
  - SVM
  - L1-SVM
  - Ridge regression
  - L1-regularized regression
  - Logistic regression (homework)
  - ...
- Can even learn nonlinear functions!