Course organization

¢ Retrieval
¢ Given a query, find “most similar” item in a large data set
e Applications: GoogleGoggles, Shazam, ...
¢ Supervised learning (Classification, Regression)
¢ Learn a concept (function mapping queries to labels)
¢ Applications: Spam filtering, predicting price changes, ...
¢ Unsupervised learning (Clustering, dimension reduction)
¢ |dentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...
¢ Learning with limited feedback
¢ Learn to optimize a function that’s expensive to evaluate
e Applications: Online advertising, opt. Ul, learning rankings, ...



Support Vector Machine
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¢ How can we solve this optimization?
¢ What about local minima?

e This is a convex (quadratic) program



Generally: Online convex programming

¢ Input: M

o Feasibleset S C R Solue: M géé()

» Starting point wg € S \ s.l veS

L

¢ Each round t do F

» Receive convex function f¢ : S — R - UM

o Incur loss by = fi(wy)

 Update: Wiyl = PTOjs(’wt — Utvft(wt))
o Regret:

Re = (3 0) -y o

t=1




Regret for online convex programming

Theorem [Zinkevich ‘03]

Let f1,..., fr bean arbitrary sequence of convex
functions with feasible set S

Set Tlt — 1/\/E

Then, the regret of online convex programming is
bounded by




More results on supervised learning

o Feature selection

¢ Dealing with multiple classes
¢ Regression

¢ Nonlinear methods



Regression

¢ So far, our goal was to predict a discrete label

¢ In many problems, we need to predict a real-valued
output

y = f(x;w) + noise

o E.g.
¢ Predict grade based on #homeworks solved
¢ Predict flight delay at one airport given delays at other airports
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Linear regression

¢ Given (:El, yl), s ooy (xna yn)

T .
o Assume: Y; = W x; + noise

¢ To optimize w need to quantify goodness of fit




e [VET=R ]SS

» Closed form solution: | w* = (X* X))t X"y

.
o Complexity? o)

9.\5,5 ML-D.

¢ Intractable for large # of dimensions!
¢ Will see how we can efficiently compute with OCP!



Learning non-linear functions

Key insight: Can learn nonlinear functions using
linear methods! Works for classification too!



Solving nonlinear problems
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Model selection in regression

Suppose we consider polynomials.
Which degree should we choose?
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Regularization

o When learning complex / high dimensional functions,
need to control the complexity of the model

¢ In practice, this means ensuring that weights w are small

o This process is called regularization
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Regularized regression

¢ Ridge regression:

w™ —argmm- E —w?! :1:@

» Closed form solution: o gt se Wudn

= (XTX+ D)7 X'y

» Shrinks weights of ‘unimportant’ variables.
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Regularized regression

o L1-regularized regression — “Lasso’:

n
w* = arg mui)n Al|w||1 + Z(yz —wlz;)?
i=1

» In general, no closed form solution. e, sq e
v X'x=L T selni—
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More general loss functions

¢ A large fraction of methods in supervised learning can
be reduced to optimization problems of the form

w” = arg min \||wl|| + Zg(yvﬁ T, W;)
1=1

¢ Example loss functions
¢ Hinge loss (SVM)
¢ Multi-class hinge loss
¢ Log loss (next homework!)
¢ Square loss
¢ £-sensitive loss

‘ LN )
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Solving regularized learning problems

¢ Reduce to online convex programming:

Wi+1 = Projs(azt — e V(Y15 e, wt))
¢ Gradient computation specific to loss function

¢ Reprojection: Need to solve

: /
Alre 111111 |[|W — W+ ||+
gw’ES ” tHZ
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Choosing the right regularizer

¢ How should we choose the regularization parameter?
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Cross-validation

¢ May overfit if we optimize for fixed training set!
¢ Remedy: Cross-validation

D, D, D,

¢ Split data set into k “folds”

¢ For each possible regularization parameter setting A:
e Fori=1:k
« Train on all but i-th fold; calculate error E,

1
¢ Estimate generalization error for param. A as E E E;
)
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Aside: Cross-validation

o How to choose k? 5, 10...

K =n(l1-—

1
logn —1

)

¢ Then cross-validation is equivalent to the Bayesian
Information Criterion

BIC = —2log/ —I—@Ogn

P

¢ CV penalises the degrees of freedom.

¢ These results only apply for linear models with
squared error loss.
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Aside: Dual formulation of SVM

o Primal form: min w!w + C
w,b,£>0 Zgz

s.tyi(wla; +b) >1-¢

Using Lagrange multipliers:
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¢ Dual form:
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Aside: The , Kernel Trick”

¢ Standard lesson in Machine Learning:

e Can solve linear problem in feature space implicitly using
2 2
inner products only  XeZ &> ()= (K,Z,Zx.x,_ Xa \

o Example: Dual formulation of SVM d>(><)T<(>(X’) = (x’x’)L
N

1
moz}x ; Q; — iai@jyz‘%jk(miv 379')

s.t. 0 < qa; <C and Z%yi =0

W = Z aiyip(x;)

» Can we use this for large data?? N o
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,Inverse Kernel Trick” [Rahimi, Recht, NIPS ‘07]

¢ Idea: Explicitly generate low-dim (nonlinear!) features
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Random Fourier Features [RR NIPS‘07]

Algorithm 1 Random Fourier Features.

Require: A positive definite shift-invariant kernel k(x,y) = k(x — y).

Ensure: A randomized feature map z(x) : R¢ — R2L so that z(x)'z(y) ~ k(x — y).
Compute the Fourier transform p of the kernel k: p(w) = 3= [ e I AE(A) dA.
Draw D iid samples wy, -+ - ,wp € R from p.

Let z(x) = \/ % [COS(Wix) -+ cos(wpx) sin(w]x) - sin(wbx)]'.

Kernel Name k(A) p(w)
Gaussian e 32 (2m)" Z e~ 52
Laplacian e~ 1Al [1, m

d

2 —lla
Cauchy Hdm e~ Al
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Performance of random features

Claim 1 (Uniform convergence of Fourier features). Let M be a compact subset of R? with diam-
eter diam(M). Then, for the mapping z defined in Algorithm 1, we have

et ] () ()

where o
ther, sup, ... |2(x)'z(y) — k(y,x)| < € with any constant probability when D =

Q (e% log %2 diam(M)>.

€

2 = Ep|w'w] is the second moment of the Fourier transform of k.  Fur-

¢ Solving linear SVM on explicit (random) features
provably ,almost the same® as solving non-linear SVM
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Performance of random features [RR ‘07]

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P = 30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 0 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P = 30 svMlight
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P = 50 1ibSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) < 1s
4,900,000 instances 127 dims D = 50 P =10 SVM+sampling

o Linear SVM/Regression on random features

outperforms nonlinear methods
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¢ Online convex programming is a natural approach to
solve regularized learning problems

o Can be parallelized (to some extent)

¢ Flexible choice of loss function and regularizer gives
rise to many useful methods
o SVM
o L1-SVM
¢ Ridge regression
e L1-regularized regression
¢ Logistic regression (homework)

‘ [N ]

¢ Can even learn nonlinear functions!
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