Active learning

- Labels are expensive (need to ask expert)
- Want to minimize the number of labels

Why should active learning help?

- Example: Learning linear separators in 1D
- For now, assume data is noise free

Does active learning always help?

Pool-based active learning

- Pool-based active learning
 - Obtain large pool of unlabeled data
 - Selectively request a few labels, until we can infer all remaining labels
- Resulting classifier "as good" as that obtained from complete labeled set
- Reduction in labels
 - In some cases, exponential reduction possible!
 - In other cases, may need to request almost all labels

How should we request labels??

Uncertainty sampling

- Given pool of n unlabeled examples
- Repeat until we can infer all remaining labels:
 - Assign each unlabeled data an "uncertainty score"
 - Greedily pick the most uncertain example and request label

One of the most popular heuristics!

Uncertainty sampling in SVMs

Select point nearest to hyperplane decision boundary for labeling

$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}_i \in \mathcal{U}} |\mathbf{w}^T \mathbf{x}_i|$$

[Tong & Koller, 2000; Schohn & Cohn, 2000; Campbell et al. 2000]

Example: linear classifiers in 1D

Real data example

[Grauman et al]

Active learning results

[Grauman et al]

Uncertainty sampling in large data

- For i = 1:max_labels
 - For j = 1:n
 - Calculate uncertainty U(j) score of example j
 - Pick most uncertain example
 - Retrain SVM
- Complexity to pick m labels?

 For each label

 |WTX; | For i=1 n Cheap

 train SVM Cheap

Sub-linear time active learning

Goal: Map hyperplane query directly to its nearest points.

Sub-linear time active selection

To retrieve those points for which $|\mathbf{w}^T \mathbf{x}_i|$ small, want probable collision for **perpendicular** vectors:

Assuming normalized data.

[Grauman et al]

Less likely to split + Highly likely to split = Unlikely to collide

= More likely to collide

- Use two random vectors, two-bit hash key
 - one to constrain the angle with w
 - one to constrain the angle with -w

[Grauman et al]

Less likely to split + Highly likely to split

= Unlikely to collide

Less likely to split + Less likely to split

= More likely to collide

- Use two random vectors, two-bit hash key
 - one to constrain the angle with w
 - one to constrain the angle with -w

[Grauman et al]

Resulting asymmetric two-bit hash:

$$\begin{aligned} \textbf{Let:} & h_{\boldsymbol{u},\boldsymbol{v}}(\boldsymbol{a},\boldsymbol{b}) = [h_{\boldsymbol{u}}(\boldsymbol{a}),h_{\boldsymbol{v}}(\boldsymbol{b})] = [\text{sign}(\boldsymbol{u}^T\boldsymbol{a}),\text{sign}(\boldsymbol{v}^T\boldsymbol{b})] \\ & \boldsymbol{u},\boldsymbol{v} \sim \mathcal{N}(0,I) \end{aligned}$$

[Grauman et al]

Resulting asymmetric two-bit hash:

Let:
$$h_{\boldsymbol{u},\boldsymbol{v}}(\boldsymbol{a},\boldsymbol{b}) = [h_{\boldsymbol{u}}(\boldsymbol{a}),h_{\boldsymbol{v}}(\boldsymbol{b})] = [\operatorname{sign}(\boldsymbol{u}^T\boldsymbol{a}),\operatorname{sign}(\boldsymbol{v}^T\boldsymbol{b})]$$

Define hash family:

$$h_{\mathcal{H}}(z) = \begin{cases} h_{u,v}(z,z), & \text{if } z \text{ is a database point vector,} \\ h_{u,v}(z,-z), & \text{if } z \text{ is a query hyperplane vector.} \end{cases}$$

Can calculate LSH collision probability
$$\Pr[h_{\mathcal{H}}(\boldsymbol{w}) = h_{\mathcal{H}}(\boldsymbol{x})] = \Pr[h_{\boldsymbol{u}}(\boldsymbol{w}) = h_{\boldsymbol{u}}(\boldsymbol{x})] \Pr[h_{\boldsymbol{v}}(-\boldsymbol{w}) = h_{\boldsymbol{v}}(\boldsymbol{x})]$$

$$= \frac{1}{4} - \frac{1}{\pi^2} \left(\theta_{\boldsymbol{x},\boldsymbol{w}} - \frac{\pi}{2}\right)^2$$

$$\theta \to 0, \quad \theta \to 0$$

$$\theta \to \frac{\pi}{2}, \quad \theta \to \frac{\pi}{2}$$

[Jain, Vijayanarasimhan & Grauman, NIPS 2010].

Data flow: Hashing a hyperplane query

Hash all unlabeled data into table

[Grauman et al]

• Active selection loop:

- Retrieve unlabeled data points with which it collides
- Request labels for them
- Update hyperplane

Improvement in AUROC Learning curves EH-Hash ▲ H-Hash Random Exhaustive Selection iterations 250 300 Selection time Time (secs) = log scale

Results: Hashing a hyperplane query

[Grauman et al]

By minimizing **both** selection and labeling time, provide the best accuracy per unit time.

Tiny Images Dataset / CIFAR

Results: Hashing a hyperplane query

[Grauman et al]

Selected for labeling in first 9 iterations

Efficient active selection with pool of 1 Million unlabeled examples and 1000s of categories.

Summary so far:

- Uncertainty sampling: Simple heuristic for active learning
- For SVMs:
 - pick points closest to decision boundary
 - Can select efficiently using LSH
- Can get significant gains in labeling cost, even for large data sets.
- Now:
 - Theory of active learning
 - Criteria beyond uncertainty sampling

Issues with uncertainty sampling

uncertain ≠ informative!

Defining "informativeness"

 Need to capture how much "information" we gain about the true classifier for each label

Version space:

set of all classifiers consistent with the data

$$\mathcal{V}(D) = \{ \mathbf{w} : \forall (\mathbf{x}, y) \in D \ \operatorname{sign}(\mathbf{w}^T \mathbf{x}) = y \}$$

Idea:

would like to shrink version space as quickly as possible

[Tong & Koller]

Understanding uncertainty sampling

 Uncertainty sampling picks data point closest to current solution

 Uncertainty sampling picks data point closest to current solution

Version space reduction

- Ideally: Wish to select example that splits the version space as equally as possible
- In general, halving may not be possible
 - → find "balanced" split
- How do we quantify how "balanced" a split is?

Relevant version space

- Version space for data set $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_k, y_k)\}$ $\mathcal{V}(D) = \{\mathbf{w} : \forall (\mathbf{x}, y) \in D \ \operatorname{sign}(\mathbf{w}^T \mathbf{x}) = y\}$
- Suppose we're also given an unlabeled pool

$$U = \{\mathbf{x}_1', \dots, \mathbf{x}_n'\}$$

Relevant version space:

Labelings of pool consistent with the data

$$\widehat{\mathcal{V}}(D; U) = \{ h : U \to \{+1, -1\} : \exists w \in \mathcal{V}(D) \forall \mathbf{x} \in U \ \operatorname{sign}(\mathbf{w}^T \mathbf{x}) = h(y) \}$$

Generalized binary search

- Start with D = {}
- While
 - For each unlabeled example x in U compute

 Pick example x where request label and add to D is largest,

Can prove that GBS requires only more labels than any other active learning strategy, both on average and in worst-case

GBS for linear separators in 1D

Version space reduction

- Ideally: Wish to select example that splits the version space as equally as possible
- In general, halving may not be possible
 - → find "balanced" split
 - Generalized binary search
 - Competitive with optimal active learning scheme (in the case of no noise) [c.f., Dasgupta '04]
- Size of the (relevant) version space difficult to calculate
- Need approximation!

 Uncertainty sampling picks data point closest to current solution

Suggests looking at the margins of the resulting SVMs

Achieving "balanced" splits

- Key idea: look at how labels affect resulting classifier
- Suppose we're considering data point i
- For each possible label $\{+,-\}$ calculate resulting SVMs, with margins m^+ , m^-
- Define informativeness score of i depending on how "balanced" the resulting margins are
 - Max-min margin:

Ratio margin:

$$\operatorname{Min}\left(\frac{M^{+}}{M^{-}}, \frac{M^{-}}{M^{+}}\right)$$

Selecting "balanced" splits

Max-min margin

Ratio margin

Selection

[Tong & Koller] MaxMargin query MaxRatio query Simple query

Computational challenges

- Max-min margin and ratio margin more expensive
 - Need to train an SVM for each data point, for each label!!
- Practical tricks:
 - Only score and pick from small random subsample of data
 - Only use "fancy" criterion for the first 10 examples, then switch to uncertainty sampling
 - Occasionally pick points uniformly at random

Results (text classification)

Dealing with noise

- So far, we have assumed that labels are exact
- In practice, there is always noise. How should we deal with it?
- Practice:
 - Can use same algorithms (simply use SVM with slack variables)
- Theory:
 - Analysis much harder
 - Modified version of generalized binary search still works if noise is i.i.d. [Novak, NIPS '09]
 - If noise is correlated need new criterion [Golovin, Krause, Ray, NIPS '10]

What you need to know

- Pool-based active learning
- Different selection strategies
 - Uncertainty sampling: Efficient, but can fail
 - Informative sampling: Expensive, but can effectively reduce version space
- Computational tricks
 - Locality sensitive hashing to speed up uncertainty sampling
 - Hybrid selection criteria