Active learning

- Labels are expensive (need to ask expert)
- **Want to minimize the number of labels**
Why should active learning help?

- **Example**: Learning linear separators in 1D
- For now, assume data is noise free

![Diagram](attachment:image.png)

Can learn all labels in $O(\log_2 n)$ queries.
Does active learning always help?

- Have to query all samples
- Can do binary search
Pool-based active learning

- Pool-based active learning
  - Obtain large pool of unlabeled data
  - Selectively request a few labels, until we can infer all remaining labels

- Resulting classifier “as good” as that obtained from complete labeled set

- Reduction in labels
  - In some cases, exponential reduction possible!
  - In other cases, may need to request almost all labels

- How should we request labels??
Uncertainty sampling

- Given pool of $n$ unlabeled examples
- Repeat until we can infer all remaining labels:
  - Assign each unlabeled data an “uncertainty score”
  - Greedily pick the most uncertain example and request label

- One of the most popular heuristics!
Select point nearest to hyperplane decision boundary for labeling

\[ x^* = \arg\min_{x_i \in U} \left| w^T x_i \right| \]

[Tong & Koller, 2000; Schohn & Cohn, 2000; Campbell et al. 2000]
Example: linear classifiers in 1D
Real data example

[Grauman et al]
Active learning results

[Grauman et al]
Uncertainty sampling in large data

• For i = 1:max_labels
  • For j = 1:n
    • Calculate uncertainty U(j) score of example j
  • Pick most uncertain example
  • Retrain SVM

• Complexity to pick m labels?

  \[
  \text{for each label} \quad i \colon 1 \text{ to } n
  \]
  \[
  - |w^T x_i| \quad \text{for } i = 1, n
  \]
  \[
  - \text{train SVM} \quad \leq \text{cheap}
  \]

\[
\text{m} \ll n
\]
Sub-linear time active learning

Goal: Map hyperplane query directly to its nearest points.

\[ h(w) \rightarrow \{ x_1, \ldots, x_k \} \]

[Jain, Vijayanarasimhan & Grauman, NIPS 2010]
Sub-linear time active selection

[Grauman et al]
To retrieve those points for which $|w^T x_i|$ small, want probable collision for perpendicular vectors:

Assuming normalized data.

[Jain, Vijayanarasimhan & Grauman, NIPS 2010]
Hashing a hyperplane query

- Use two random vectors, two-bit hash key
  - one to constrain the angle with $w$
  - one to constrain the angle with $-w$

More likely to collide
Unlikely to collide

Less likely to split + Highly likely to split
Less likely to split + Less likely to split

Unlikely to collide
More likely to collide
Hashing a hyperplane query

- Use two random vectors, two-bit hash key
  - one to constrain the angle with \( w \)
  - one to constrain the angle with \( -w \)

=Grauman et al=  

\[ u \quad v \]

\[ \begin{align*}
\text{Less likely to split} & \quad + \quad \text{Highly likely to split} \\
& \quad = \quad \text{Unlikely to collide}
\end{align*} \]

\[ u \quad v \]

\[ \begin{align*}
\text{Less likely to split} & \quad + \quad \text{Less likely to split} \\
& \quad = \quad \text{More likely to collide}
\end{align*} \]
Hashing a hyperplane query

Let: $h_{u,v}(a, b) = [h_u(a), h_v(b)] = [\text{sign}(u^T a), \text{sign}(v^T b)]$

$u, v \sim \mathcal{N}(0, I)$
Hashing a hyperplane query

Resulting asymmetric two-bit hash:

Let: \( h_{u,v}(a, b) = [h_u(a), h_v(b)] = [\text{sign}(u^T a), \text{sign}(v^T b)] \)

Define hash family:

\[
\begin{align*}
h_{\mathcal{H}}(z) &= \begin{cases} 
h_{u,v}(z, z), & \text{if } z \text{ is a database point vector}, \\
h_{u,v}(z, -z), & \text{if } z \text{ is a query hyperplane vector}.
\end{cases}
\end{align*}
\]

Can calculate LSH collision probability

\[
\Pr[h_{\mathcal{H}}(w) = h_{\mathcal{H}}(x)] = \Pr[h_u(w) = h_u(x)] \Pr[h_v(-w) = h_v(x)]
\]

\[
= \frac{1}{4} - \frac{1}{\pi^2} (\theta x, w - \frac{\pi}{2})^2
\]

\( \theta \to 0, \rho \to 0 \)

\( \theta \to \frac{\pi}{2}, \rho \to \frac{1}{4} \)

Boosting!

[Jain, Vijayanarasimhan & Grauman, NIPS 2010].
Data flow: Hashing a hyperplane query

- Hash all unlabeled data into table

Active selection loop:

- Hash current hyperplane as query
- Retrieve unlabeled data points with which it collides
- Request labels for them
- Update hyperplane

[Grauman et al]
Results: Hashing a hyperplane query

By minimizing both selection and labeling time, provide the best accuracy per unit time.

Tiny Images Dataset / CIFAR
Results: Hashing a hyperplane query

Learning “airplane”
Learning “automobile”

Selected for labeling in first 9 iterations

Efficient active selection with pool of 1 Million unlabeled examples and 1000s of categories.

[Grauman et al]
Summary so far:

- Uncertainty sampling: Simple heuristic for active learning

For SVMs:

- Pick points closest to decision boundary
- Can select efficiently using LSH

Can get significant gains in labeling cost, even for large data sets.

Now:

- Theory of active learning
- Criteria beyond uncertainty sampling
Issues with uncertainty sampling

What about these points?

uncertain ≠ informative!
Defining “informativeness”

- Need to capture how much “information” we gain about the true classifier for each label

- **Version space**: set of all classifiers consistent with the data

\[ V(D) = \{ w : \forall (x, y) \in D \quad \text{sign}(w^T x) = y \} \]

- **Idea**: would like to shrink version space as quickly as possible
Version space for SVM

[Tong & Koller]
Understanding uncertainty sampling

Uncertainty sampling picks data point closest to current solution
Approximation for sample selection

Uncertainty sampling picks data point closest to current solution
Version space reduction

- Ideally: Wish to select example that splits the version space as equally as possible
- In general, halving may not be possible
  ➔ find “balanced” split
- How do we quantify how “balanced” a split is?
Relevant version space

- Version space for data set \( D = \{(x_1, y_1), \ldots, (x_k, y_k)\} \)
  \( \mathcal{V}(D) = \{w : \forall (x, y) \in D \text{ sign}(w^T x) = y\} \)

  Un countable

- Suppose we’re also given an unlabeled pool
  \( U = \{x'_1, \ldots, x'_n\} \)

- Relevant version space:
  Labelings of pool consistent with the data
  \( \widehat{\mathcal{V}}(D; U) = \{h : U \rightarrow \{+1, -1\} : \exists w \in \mathcal{V}(D) \forall x \in U \text{ sign}(w^T x) = h(y)\} \)
Generalized binary search

- Start with $D = \{\}$
- While
  - For each unlabeled example $x$ in $U$ compute
    - Pick example $x$ where label is largest,
    - request label and add to $D$

Can prove that GBS requires only more labels than any other active learning strategy, both on average and in worst-case
GBS for linear separators in 1D
Version space reduction

- **Ideally**: Wish to select example that splits the version space as equally as possible
- In general, halving may not be possible
  - find “balanced” split
    - Generalized binary search
    - Competitive with optimal active learning scheme
      (in the case of no noise) [c.f., Dasgupta ‘04]

- Size of the (relevant) version space difficult to calculate
- Need approximation!
Approximation for sample selection

- Uncertainty sampling picks data point closest to current solution
Approximation for sample selection
Suggests looking at the margins of the resulting SVMs
Achieving “balanced” splits

- **Key idea:** look at how labels affect resulting classifier
- Suppose we’re considering data point \( i \)
- For each possible label \{+, -\} calculate resulting SVMs, with margins \( m^+, m^-\)
- Define informativeness score of \( i \) depending on how “balanced” the resulting margins are
  - Max-min margin: \( \min (m^+, m^-) \)
  - Ratio margin: \( \min \left( \frac{m^+}{m^-}, \frac{m^-}{m^+} \right) \)
Selecting “balanced” splits

Max-min margin

Ratio margin
Selection

[Tong & Koller]
Computational challenges

- Max-min margin and ratio margin more expensive
  - Need to train an SVM for each data point, for each label!!

Practical tricks:
- Only score and pick from small random subsample of data
- Only use “fancy” criterion for the first 10 examples, then switch to uncertainty sampling
- Occasionally pick points uniformly at random
Results (text classification)
Dealing with noise

- So far, we have assumed that labels are exact
- In practice, there is always noise. How should we deal with it?
- Practice:
  - Can use same algorithms (simply use SVM with slack variables)
- Theory:
  - Analysis much harder
  - Modified version of generalized binary search still works if noise is i.i.d. [Novak, NIPS ’09]
  - If noise is correlated need new criterion [Golovin, Krause, Ray, NIPS ‘10]
What you need to know

- Pool-based active learning
- Different selection strategies
  - Uncertainty sampling: Efficient, but can fail
  - Informative sampling: Expensive, but can effectively reduce version space
- Computational tricks
  - Locality sensitive hashing to speed up uncertainty sampling
  - Hybrid selection criteria