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Announcements

¢ Homework 4 out tomorrow



Course organization

o

o

o

¢ Unsupervised learning (Clustering, dimension reduction)

¢ |dentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...



Unsupervised learning

¢ “Learning without labels”

¢ Typically useful for exploratory data analysis
(“find patterns”; visualization; ...)
¢ Most common methods:

e Clustering (unsupervised classification)
e Dimension reduction (unsupervised regression)



What is clustering?

¢ Given data points, group into clusters such that
e Similar points are in the same cluster
e Dissimilar points are in different clusters

¢ Points are typically represented either
¢ in (high-dimensional) Euclidean space

¢ in a metric space, given in terms of pairwise distances
(Jaccard, cosine, ...)

o Anomaly / outlier detection: Identification of points
that “don’t fit well in any of the clusters”



Examples of clustering

o Cluster
e Documents based on the words they contain
¢ Images based on image features
e DNA sequences based on edit distance
¢ Products based on which customers bought them
e Customers based on their purchase history
o Web surfers based on their queries / sites they visit
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Standard approaches to clustering

¢ Hierarchical clustering

¢ Build a tree (either bottom-up or top-down), representing
the distances among the data points

o Example: single-, average- linkage agglomerative clustering

¢ Partitional approaches

¢ Define and optimize a notion of “goodness” defined over
partitions

e Example: Spectral clustering, graph-cut based approaches
¢ Model-based approaches

¢ Maintain cluster “models” and infer cluster membership
(e.g., assign each point to closest center)

o Example: k-means, Gaussian mixture models, ...



¢ Review standard clustering algorithms
¢ K-means
¢ Probabilistic mixture models

@ Discuss how to scale them to massive data sets and
data streams



Clustering example
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k-means

o Assumes points are in Euclidean space x; € R
o Represent clusters as centers p; € R
e Each point is assigned to closest center

Goal: Pick centers to minimize average squared distance

N
()= 2 mim s = xill

¢ Non-convex optimization!

e NP-hard =2 can’t solve optimally in general
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Classical k-means algorithm

¢ Initialize cluster centers

¢ E.g., pick one point at random, the other ones with
maximum distance

¢ While not converged

¢ Assign each point x; to closest center
. ’ AU A
C; & avymm [ X /Md/('z.
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¢ Update center as mean of assigned data points
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Properties of k-means

¢ Guaranteed to monotonically decrease average
squared distance in each iteration

N
: ¢
L= min|[— x|
1=1

L{Mmo ) < L(/v\ m)

¢ Converges to a local optimum
o Complexity:
¢ Per iteration A IQ

e Have to process entire data set in each iteration
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K-means for large data sets / streams

¢ What if data set does not fit in main memory?
¢ In principle not a problem (why?)

e But each iteration still requires an entire pass
through the data set

¢ Recall supervised learning (online SVM, etc.)
e There we were able to process one data point at a time

¢ Get (provably) good solutions from a single pass through
the data

¢ Could even do it in parallel!

¢ Can we do the same thing for clustering??
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Streaming clustering

:

¢ How should me maintain clusters as new data arrives?
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Recall online SVM

¢ Recall Online SVMs (& stochastic gradient descent)
¢ Loss function decomposes additively over data set

A
L(w) = Z hinge(x;; yz',’Wl
1< 2‘, (w)
¢ Can take a (sub-)gradient step for each data point
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Online k-means

¢ For k-means, loss function also decomposes additively

over data set
mel\ug X5
1=1 L/\/\ 7

£ (0

o Let’s try take a (sub-)gradient step for each data point

/ucf«o - /\A(f) ¢ 9 O Ze(/&cf))
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Calculating the gradient

N

=S winfly - xlf
1= 1 G~ e
M= ’/‘*:cJeR"'é tlp) A
~5-
/2
D40 § O i ety

—
% A g~k

3/«/\0'

= 2(/AJ -\ oflown e

24



Online k-means algorithm

¢ Initialize centers randomly
o Fort=1:N

«Find ¢ = argmin ||p; — X¢l|2
J

oSet  fle < fhe + Ne (Xt — fhe)

¢ To converge to local optimum, need that
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Practical aspects

¢ Generally works best if data is «randomly» ordered
(like stochastic gradient descent)

» Typically, want to choose larger value for k

¢ How can one implement multiple random restarts in
ohe pass?
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Problems with online k-means

¢ Have to commit to “k” in advance

¢ Objective function non-convex (and problem NP-hard)
—> guarantees for online convex programming / SGD
do not apply!

¢ Not clear how to parallelize
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Alternative: Summarizing large data sets

¢ |dea:

¢ Efficiently construct a compact version C of the data set D
such that solving k-means on C gives a good solution to D

¢ Approach:

e First construct C such that it allows approximately answer
“k-means queries”

N
i.e., approximately evaluate L(M) — Zmin HM — XZH%

¢ Then solve k-means using the approximate loss function
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k-mean queries
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Data set summarization for k-means
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Data set summarization for k-means
w(cy) = 3

&

w(cp) = 100@ w(&sé);:>
w(c3) =1 @

w(cy) = 2
¢ Key idea: Replace many points by one weighted
representative
Ly (p; C E W %nm HMJ_XHQ
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Coresets

. 2
Li(p;C) = w _min g — x|l
(o) EC je{1,...,
W(C1)' 3
W(C5) =1
W(C3) 1 w(cg) = 2

Cis called a (k,e)-coreset for data set D, if
(1 —¢&)Li(u; D) < Lg(p; C) < (1 +¢)Lg(p; D)
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Constructing coresets
» Suppose for all pairs of points: HXz — X ‘ ‘2 <1

¢ First attempt: Random sampling
% Pick n << N points C uniformly at random from D

L[ Ly (p; C)] = Lg(p; D)

x Hoeffding’s inequality gives

Pr(|Lk(; C) = Li(; D)| > €) < 2exp (—2¢n)

1 1
« Thus need (’) _ log — | points to ensure
g2 0

absolute error at most € with probability at least 1-6 35




Constructing coresets

¢ Suppose for all pairs of points: HXz — X ‘ ‘2 <1
o First attempt: Random sampling
% Pick n << N points C uniformly at random from D

< Assign uniform weights N/n R r\,(A( 2. [\5}
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Can we get small relative error?
opt - ?-veos  Ssl him

b Nt L)) =

X, Xy s Xy

({l W—p& n C.NE Y)oc'u(t C of radwmm,
Plesh =) €5

\,,,(;‘ ?—.\ir L[/u‘, C) =0

[/{/m', D> 20
» To ensuredowmmultiglicative®ror, b\éed more

complex construction

¢ =» will use non-uniform sampling!
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Sampling Distribution

Bias sampling
i 9(5’3) towards small clusters
|

~
Sampling distribution



Importance Weights
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Creating a Sampling Distribution
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Creating a Sampling Distribution
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Iteratively find representative points
* Sample a small set uniformly at random
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Creating a Sampling Distribution
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Iteratively find representative points
* Sample a small set uniformly at random
 Remove half the blue points nearest the samples
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Creating a Sampling Distribution
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 Sample a small set uniformly at random

 Remove half the blue points nearest the samples
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Creating a Sampling Distribution
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 Sample a small set uniformly at random

 Remove half the blue points nearest the samples
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Creating a Sampling Distribution
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Iteratively find representative points
 Sample a small set uniformly at random
 Remove half the blue points nearest the samples
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Creating a Sampling Distribution
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Iteratively find representative points
 Sample a small set uniformly at random

 Remove half the blue points nearest the samples
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Creating a Sampling Distribution

o 9

Iteratively find representative points
 Sample a small set uniformly at random
 Remove half the blue points nearest the samples
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Creating a Sampling Distribution

Small clusters
are represented

e Qo

Iteratively find representative points
 Sample a small set uniformly at random

 Remove half the blue points nearest the samples
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Creating a Sampling Distribution

Partition data via a Voronoi diagram centered at @ points
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Creating a Sampling Distribution

Points in sparse cells get more mass
and points far from centers
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Importance Weights

Points in sparse cells get more mass
and points far from centers

? q(r) * ~(z)

e . 1
Sampling distribution ¢ Weights 7 X
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Non-uniform sample
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Coresets via Adaptive Sampling

B«~0® D+ D
while D" # ()

S + uniformly sample 10dk In(1) points from D’
1D’

Remove e
B+ BUS

Partition D into Voronoi cells Dy centered at b € B

points nearest to S from D’

(2) = |c|c11<a:>

5 dist(x,B)?
q(z) < [1p51 + 5=, @ist(@ B2 |

C + sample 10[dk log” nlog(s)/€?*] from D via g

Cis (k,e)-coreset of size polynomial ir@k,log n, 1/, 1@
w Tl fbrzsb > (-4
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Can do better: Coresets for k-means

¢ Theorem [Har-Peled and Kushal, ‘05]
One can find efficiently a (k,g)-coreset for k-means of size

O(kg/edH)

o Theorem [Feldman et al '07]
One can efficiently find a weak (k,g)-coreset of size

——

C’)(poly(k, 1 /e))

¢ Allows PTAS for k-means!
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Coresets exist for

¢ K-means, K-median

¢ K-line means / median

¢ PageRank

¢ SVMs

o Diameter of a point set

¢ Matrix low-rank approximation

o ...
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Composition of Coresets

[c.f. Har-Peled, Mazumdar 04]
Merge The union of two (k, €)-coresets is a (k, €)-coreset.
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Composition of Coresets

[Har-Peled, Mazumdar 04]
Merge The union of two (k, €)-coresets is a (k, €)-coreset.

Compress A (k,d)-coreset of a (k,€)-coreset is a
(k, e+ 0 + ed)-coreset
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Coresets on Streams

[Har-Peled, Mazumdar 04]

Merge The union of two (k, €)-coresets is a (k, €)-coreset.

Compress A (k,d)-coreset of a (k,€)-coreset is a
(k, e+ 0 + ed)-coreset

% T

€
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Coresets on Streams

[Har-Peled, Mazumdar 04]
Merge The union of two (k, €)-coresets is a (k, €)-coreset.

Compress A (k,d)-coreset of a (k,€)-coreset is a
(k, e+ 0 + ed)-coreset
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Coresets on Streams

[Har-Peled, Mazumdar 04]
Merge The union of two (k, €)-coresets is a (k, €)-coreset.

Compress A (k,d)-coreset of a (k, €)-coreset is a
(k, e+ 0 + ed)-coreset

=T =
TT T T

2@23€2+... €

Error grows linearly with number of compressions -



Coresets on Streams

Error grows with
height of tree

/ \



Coresets in Parallel




k-means clustering with coresets

o Given data set D, desired number of clusters k,
precision €

o Construct (k, €) - coreset C
< E.g., in parallel using MapReduce

¢ Solve k-means on coreset
« If coreset small, can even do exhaustive search!
< In practice, run k-means with many restarts

e Resulting solution will be (1+€)-optimal for D
e =» Provably near-optimal solution!
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Summary so far

o Clustering is a central problem in unsupervised
learning

¢ Two main classes of approaches
« Hierarchical (difficult to scale)
< Assignment based

¢ Discussed k-means algorithm
< Widely used clustering algorithm
< “Non-linear” versions available

« Can scale to large data sets using online optimization and
coreset constructions
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