

Data Mining Learning from Large Data Sets

Lecture 9 – Probabilistic clustering on large data sets

263-5200-00L Andreas Krause

Course organization

Retrieval

- Given a query, find "most similar" item in a large data set
- Determine relevance of search results
- Applications: GoogleGoggles, Shazam, ...
- Supervised learning (Classification, Regression)
 - Learn a concept (function mapping queries to labels)
 - Applications: Spam filtering, predicting price changes, ...
- Unsupervised learning (Clustering, dimension reduction)
 - Identify clusters, "common patterns"; anomaly detection
 - Applications: Recommender systems, fraud detection, ...
- Learning with limited feedback
 - Learn to optimize a function that's expensive to evaluate
 - Applications: Online advertising, opt. UI, learning rankings, ...

Today we will

- Clustering large data sets with probabilistic mixture models
- Discuss why probabilistic clustering is useful
- Briefly review the EM algorithm
- See analogues of online k-means and data set summarization (coresets)
- See some applications of classification and anomaly detection

Summary from last lecture

	Geometric (k-means)	Probabilistic (GMM)	
	Simple interpretation	More flexible; "confidence" (e.g. for anomaly detection,)	
Batch	Classic k-means	EM	Slow
Online	Online k-means	???	Very fast but not flexible / robust
Compression	Coresets	???	Fast and accurate

Example: Gaussian distribution

- σ = Standard deviation
- μ = mean

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Multivariate Gaussian distribution

$$\mathcal{N}(y;\mu \mathcal{L}) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)\right)$$

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$$

Gaussian mixtures

Convex-combination of Gaussian distributions

$$P(\mathbf{x} \mid \mu, \Sigma) = \sum_{i} w_{i} \mathcal{N}(\mathbf{x}; \mu_{i}, \Sigma_{i})$$

where

Mixture modeling

Model each cluster as a probability distribution

$$P(\mathbf{x} \mid \theta_j)$$

Assuming data is sampled i.i.d., likelihood of data is

$$\underline{P(D \mid \theta)} = \prod_{i} \sum_{j} w_{j} P(\mathbf{x_i} \mid \theta_{j})$$

Choose parameters to minimize negative log likelihood

$$L(D; \theta) = -\sum_{i} \log \sum_{j} w_{j} P(\mathbf{x_i} \mid \theta_{j})$$

Clustering = Fitting a mixture model

$$(\mu^*, \Sigma^*, w^*) = \arg\min - \sum_{i} \log \sum_{j=1}^{\kappa} w_j \mathcal{N}(\mathbf{x_i} \mid \mu_j, \Sigma_j)$$

Sampling from a Gaussian mixture

- To sample a data point i
 - ullet Sample component indicator z_i so that $P(z_i=j)=w_j$
 - ullet Then sample \mathbf{X}_i from $\,\mathcal{N}(\mathbf{x}_i \mid \mu_{z_i}, \Sigma_{z_i})\,$

Posterior probabilities

- Suppose we're given a model P(2|9) P(x(2,9))
- Then, for each data point, we can compute a posterior distribution over cluster membership
- This means inferring latent (hidden) variables z

$$\underline{\gamma_j(x)} = P(z = j \mid \mathbf{x}, \Sigma, \mu)$$

$$= \frac{w_j P(\mathbf{x} \mid \Sigma_j, \mu_j)}{\sum_{\ell} w_{\ell} P(\mathbf{x} \mid \Sigma_{\ell}, \mu_{\ell})}$$

Maximum likelihood estimation

At MLE

$$(\mu^*, \Sigma^*, w^*) = \arg\min - \sum_{i} \log \sum_{j=1}^{k} w_j \mathcal{N}(\mathbf{x_i} \mid \mu_j, \Sigma_j)$$

it must hold that

$$\mu_j^* = \frac{\sum_{i=1}^N \gamma_j(\mathbf{x}_i) \mathbf{x}_i}{\sum_{i=1}^N \gamma_j(\mathbf{x}_i)}$$

$$\Sigma_j^* = \frac{\sum_{i=1}^N \gamma_j(\mathbf{x}_i) (\mathbf{x}_i - \mu_j) (\mathbf{x}_i - \mu_j)^T}{\sum_{i=1}^N \gamma_j(\mathbf{x}_i)}$$

$$w_j^* = \frac{1}{N} \gamma_j(\mathbf{x}_i)$$

These equations are coupled \rightarrow difficult to solve jointly

Alternating optimization: EM

- While not converged
 - E-step: calculate cluster membership weights ("Expected sufficient statistics") for each point:

Calculate $\gamma_j(\mathbf{x}_i)$ for each i and j given estimates of μ, Σ, w from previous iteration

 M-step: Fit clusters to weighted data points (closed form Maximum likelihood solution!)

Compute
$$\mu, \Sigma, w$$
 given $\gamma_j(\mathbf{x}_i)$ e.g.,

$$\mu_j \leftarrow \frac{\sum_{i=1}^N \gamma_j(\mathbf{x}_i) \mathbf{x}_i}{\sum_{i=1}^N \gamma_j(\mathbf{x}_i)}$$

Example fit on Bio Assay data

[Andrew Moore]

Why are mixture models useful?

- Can encode assumptions about "shape" of clusters
 - E.g., fit ellipses instead of points

- Can be part of more complex statistical models
 - E.g., classifiers (or more generally graphical models)
- Probabilistic models can output likelihood P(x) of a point x
 - Useful for anomaly detection

Clustering for (nonlinear) classification

Gaussian-Bayes classifiers

- ullet Given labeled data set $\,D = \{(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_N,y_N)\}\,$
 - Label $y_i \in \{1, \dots m\}$
 - Estimate class prior P(y)
 - Estimate conditional distribution for each class

$$P(\mathbf{x} \mid y) = \sum_{j} w_j^{(y)} \mathcal{N}(\mathbf{x}; \mu_j^{(y)}, \Sigma_j^{(y)})$$

as Gaussian mixture model

• How do we use this model for classification?

$$P(y|x) = \frac{P(y) \cdot P(x|y)}{\sum_{i} p(y') P(x|y')} = \frac{1}{2} P(y) \cdot P(x|y)$$
Classify acc. to pargure $P(y|x) = argure P(y) P(x|y)$

$$y = 23$$

Resulting classifier

Anomaly detection with mixture models

 Can classify data points according to estimated probability density

Anomaly detection

Probabilistic clustering for large data sets

- EM has similar drawbacks as k-means for large data sets
 - Need to make one pass through the entire data set per iteration
- Can we use similar tricks as for k-means to scale to large data sets?
 - Online optimization?
 - Compressed representation?

EM once again:

- While not converged
 - E-step: calculate cluster membership weights ("Expected sufficient statistics") for each point:

Calculate $\gamma_j(\mathbf{x}_i)$ for each i and j given estimates of μ, Σ, w from previous iteration

 M-step: Fit clusters to weighted data points (closed form Maximum likelihood solution!)

Compute
$$\mu, \Sigma, w$$
 given $\gamma_j(\mathbf{x}_i)$ e.g.,
$$\mu_j \leftarrow \frac{\sum_{i=1}^N \gamma_j(\mathbf{x}_i)\mathbf{x}_i}{\sum_{i=1}^N \gamma_j(\mathbf{x}_i)}$$

Another way to look at EM

- ullet Initialize t=0, $\mu^{(0)}, \Sigma^{(0)}, w^{(0)}$
- While not converged
 - Reset: $\hat{\mu}_j=0, \hat{\Sigma}_j=0, \hat{w}_j=0$
 - For each example i and component j do compute $\gamma_j(\mathbf{x}_i) = \gamma_j(\mathbf{x}_i \mid \mu^{(t)}, \Sigma^{(t)}, w^{(t)})$

compute
$$\hat{\mu}_{j} \leftarrow \hat{\mu}_{j} + \gamma_{j}(\mathbf{x}_{i})\mathbf{x}_{i}$$
$$\hat{\Sigma}_{j} \leftarrow \hat{\Sigma}_{j} + \gamma_{j}(\mathbf{x}_{i})\mathbf{x}_{i}\mathbf{x}_{i}^{T}$$
$$\hat{w}_{j} \leftarrow \hat{w}_{j} + \gamma_{j}(\mathbf{x}_{i})$$

Set t=t+1, and

$$\mu_j^{(t)} = \hat{\mu}_j / \hat{w}_j \quad \Sigma_j^{(t)} = \hat{\Sigma}_j / \hat{w}_j \quad w_j^{(t)} = \hat{w}_j / N$$

Can we make EM incremental?

- *Idea*: Update estimates of μ, Σ, w after each example
- Similar as online k-means

Stepwise EM

- ullet Initialize t=0, $\mu^{(0)}, \Sigma^{(0)}, w^{(0)}$
- While not converged
 - For each example x₁ and component j do

compute
$$\gamma_j(\mathbf{x}_t) = \gamma_j(\mathbf{x}_t \mid \mu^{(t)}, \Sigma^{(t)}, w^{(t)})$$

compute
$$\hat{\mu}_{j} \leftarrow \hat{\mu}_{j} + \eta_{t} \gamma_{j}(\mathbf{x}_{t})(\mathbf{x}_{t} - \hat{\mu}_{j})$$
$$\hat{\Sigma}_{j} \leftarrow \hat{\Sigma}_{j} + \eta_{t} \gamma_{j}(\mathbf{x}_{t})(\mathbf{x}_{t} \mathbf{x}_{t}^{T} - \hat{\Sigma}_{j})$$
$$\hat{w}_{j} \leftarrow \hat{w}_{j} + \eta_{t}(\gamma_{j}(\mathbf{x}_{t}) - \hat{w}_{j})$$

Set t=t+1, and
$$~\mu_j^{(t)}=\hat{\mu}_j/\hat{w}_j~\Sigma_j^{(t)}=\hat{\Sigma}_j/\hat{w}_j~w_j^{(t)}=w_j$$

Stepwise EM more generally

Stepwise EM (sEM)

```
\mu \leftarrow \text{initialization}; k = 0 for each iteration t = 1, \dots, T: for each example i = 1, \dots, n in random order: s_i' \leftarrow \sum_{\mathbf{z}} p(\mathbf{z} \mid \mathbf{x}^{(i)}; \theta(\mu)) \, \phi(\mathbf{x}^{(i)}, \mathbf{z}) \quad \text{[inference]} \mu \leftarrow (1 - \eta_k) \mu + \eta_k s_i'; k \leftarrow k + 1 \quad \text{[towards new]}
```

- Works for other latent variable models as well (e.g., HMMs, ...)
- Instead of updating parameters after each example, often works better when using "mini-batches"

Performance of online EM

Document clustering

POS Tagging

Summary so far

	Geometric (k-means)	Probabilistic (GMM)	
Batch	Classic K-means	EM	Slow
Online	Online k-means	Online (stepwise) EM	Very fast but not flexible / robust
Compression	Coresets	555	Fast and accurate
	Simple interpretation	More flexible; "confidence" (e.g. for anomaly detection;	

A Geometric Perspective

Gaussian level sets can be expressed purely

$$\underbrace{\frac{\mathcal{N}(x;\mu,\Sigma)}{\mathcal{N}(x;\mu,\Sigma)} = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)}_{=\frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left(-W \mathrm{dist}(\tilde{x},\mathbf{s})^2\right)} \quad \text{affine subspace}_{\mathbf{s} = \mathbf{s}(\mu,\Sigma) \subset \mathbb{R}^{2d}}$$

Geometric Reduction

 $\ln P(x|\theta) \ge \min_i W_i \mathsf{dist}(\tilde{x}, \mathbf{s_i})$ Projective Clustering!

Bound using generalized \triangle -inequality

→ Can apply geometric coreset tools to mixture models

Semi-Spherical Gaussian Mixtures

Subspaces s_i can be chosen as points for Semi-spherical GMMs (covariance eigenvalues $\lambda_{min} \leq \lambda_i \leq \lambda_{max}$)

[Feldman et al '11]

Thm. An ϵ -coreset for k-means in the transformed space gives a $(k, \epsilon \lambda_{max}^2/\lambda_{min}^2)$ -coreset for semi-spherical GMMs

$$(1 - \epsilon \tfrac{\lambda_{\max}^2}{\lambda_{\min}^2}) \mathcal{L}(\theta|D) \leq \mathcal{L}(\theta|C) \leq (1 + \epsilon \tfrac{\lambda_{\max}^2}{\lambda_{\min}^2}) \mathcal{L}(\theta|D) \text{ w.h.p}$$

Coresets via Adaptive Sampling

[Feldman et al '11]

$$B \leftarrow \emptyset \quad D' \leftarrow D$$

while $D' \neq \emptyset$

 $S \leftarrow \text{uniformly sample } 10dk \ln(\frac{1}{\epsilon}) \text{ points from } D'$ Remove $\frac{|D'|}{2}$ points nearest to S from D' $B \leftarrow B \cup S$

Partition D into Voronoi cells D_b centered at $b \in B$

$$q(x) \propto \lceil \frac{5}{|D_b|} + \frac{\operatorname{dist}(x,B)^2}{\sum_{x'} \operatorname{dist}(x',B)^2} \rceil, \quad \gamma(x) = \frac{1}{|C|q(x)}$$

 $C \leftarrow \text{sample } 10\lceil dk \log^2 n \log(\frac{1}{\delta})/\epsilon^2 \rceil \text{ from } D \text{ via } q$

Thm. (C, γ) is a (k, ϵ) -coreset for semi-spherical GMMs whose covariance matrices have bounded eigenvalues

$$\lambda_{min} \leq \lambda_i \leq \lambda_{max}$$

Extensions and Generalizations

- Coresets for non-spherical GMMs can be obtained via reduction to recent projective clustering coresets
- Other mixtures (e.g. Laplace) based on $\ell_{\mathbf{q}}$ distances and other norms via generalized \triangle -inequality
- Efficient implementations in Parallel (MapReduce) and Streaming settings

 \[
 \rightarrow \left(-\left| \right) \rightarrow \rightarrow \right(-\left| \right) \rightarrow \right(-\left| \right) \rightarrow \right(-\left| \right) \rightarrow \right(-\left| \right) \rightarrow \rightarrow \rightarrow \right(-\left| \right) \rightarrow \rightarrow

GMM Coresets on Streams / in parallel

[Feldman et al '11]

THM: a (k, ϵ) -coreset for a stream of n points $\in \mathbb{R}^d$ can be computed for ϵ -semi-spherical GMM with prob. $\geq (1 - \delta)$ in space and update time poly $(dk\epsilon^{-1}\log(1/\delta)\log n)$

THM: a (k, ϵ) -coreset for n points $\in \mathbb{R}^d$ can be computed for ϵ -semi-spherical GMM with prob. $\geq 1 - \delta$ using \mathbf{m} machines in time (\mathbf{n}/\mathbf{m}) poly $(dk\epsilon^{-1}\log(1/\delta)\log n)$

Handwritten Digits

Obtain 100-dimensional features from 28x28 pixel images via PCA. Fit GMM with k=10 components.

Neural Tetrode Recordings

Waveforms of neural activity at four co-located electrodes in a live rat hippocampus. 4×38 samples = 152 dimensions.

Method comparison

	Geometric (k-means)	Probabilistic (GMM)	
Batch	Classic K-means	EM	Slow
Online	Online k-means	Online (stepwise) EM	Very fast but not flexible / robust
Compression	Coresets	Coresets	Fast and accurate
	Simple interpretation	More flexible; "confidence" (e.g. for anomaly detection;	

Case study: Community Seismic Network

[w Clayton, Heaton, Chandy et al.]

Detect and monitor earthquakes using inexpensive accelerometers in cell phones and other consumer devices

Classical Hypothesis Testing

Naïve: send all accelerometer data to fusion center that decides Quake (E=1) vs. No Quake (E=0)

1M phones produce 30TB of acceleration data a day!

Centralized solution does not scale.

The fusion center receives $S = \sum_{i=1}^{n} m_i$ "picks" from N sensors. The optimal decision rule is the hypothesis test:

Controlling False Positive Rates

For rare events, nearly *all* positives are *false* positives.

- 1. False Pick rate p_0
- 2. System-wide False Alarmarate Batrols false pick rate

Can learn τ , e.g. online percentile estimation

$$P_F = \sum_{S:"alarm"} \text{Bin}(S; p_0, N) \leftarrow \text{Don't depend on } p_1$$
(true pick rate)

Controls messages and false alarms without $\mathbb{P}(x \mid E = 1)$!

Analyzing data on the phone

Removing gravity

Analyzing data on the phone

- Calculate "fingerprints" of accelerometer data (frequency spectra, moments, ...)
- Learn (online) statistical models of normal behavior

Learning User Acceleration

17-dimensional acceleration feature vectors

Seismic Anomaly Detection

GMM used for anomaly detection

Joint Threshold Optimization

Maximize detection performance, under constraints on sensor messages and system false alarm rate

Sensor and Fusion Center thresholds are optimized, e.g. by grid search, subject to constraints

Detection performance

What density of phones do we need to ensure < 1 false alarm per year?

Larger area protected

- → More false positives
- → higher phone density needed

Preliminary estimate:

Need ~10k-20k active phones for Greater L.A. area to detect event of magnitude 5 or higher

Shake Table Validation

Empirically compared sensors and tested pick algorithm on historic M6-8 quakes.

All 6 events triggered picks from the phones

Lessons learned: From batch to online

- Batch algorithms (SVM, k-means, EM, ...) infeasible for large data sets
- Key property that allows scaling: Loss function (hinge loss, quantization error, ...) decomposes additively over data points
- Simple trick to get online algorithms: update parameters after processing each data point (or small subset)
- For supervised learning, loss functions are convex
 - online convex programming guaranteed to converge
- For unsupervised learning, loss typically non-convex
 - → online k-means/EM only converge to local optimum
 - → want to "summarize" (compress) data set to do better

Acknowledgments

 The slides are partly based on material By Chris Bishop, Andrew Moore and Danny Feldman