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Course organization

o

o

o

¢ Unsupervised learning (Clustering, dimension reduction)

¢ |dentify clusters, “common patterns”; anomaly detection
¢ Applications: Recommender systems, fraud detection, ...



Today we will

¢ Clustering large data sets with
probabilistic mixture models

¢ Discuss why probabilistic clustering is useful
¢ Briefly review the EM algorithm

¢ See analogues of online k-means and data set
summarization (coresets)

¢ See some applications of classification and anomaly
detection



Summary from last lecture

Geometric Probabilistic
(k-means) (GMM)
Simple More flexible;
interpretation “confidence”

(e.g. for anomaly
detection, ...)

Batch Classic k-means | EM Slow
Online Online k-means | 2727 Very fast
S but not
flexible /
robust
Compression | Coresets plple’ Fast and

accurate




Example: Gaussian distribution

2
o 0 =Standard deviation 1 exp (_ (. — p) )
® U =mean V2mo?
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Gaussian mixtures

¢ Convex-combination of Gaussian distributions

P(X | L, Z) — ZwiN(X; :uzvzl)

where qp, > () and w; =1
1




Mixture modeling

¢ Model each cluster as a probability distribution
P(x|0;) o
ne Ly 9]

¢ Assuming data is sampled i.i.d., likelihood of data is
P(D|0) = IILwJ Xl\é’)

¢ Choose parameters to minimize negative log likelihood

L(D;0) = — Z log Z w;P(x; | 0;)




Clustering = Fitting a mixture model

0.5}

oL

(™, X5, w —argmm—Zlongj (xi | py,25)



Sampling from a Gaussian mixture

¢ To sample a data point i
e Sample component indicator £; so thatP(zi — ]) — wj

¢ Then sample X; from N(Xz ‘ Uz, Ezz)
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Posterior probabilities

» Suppose we’re given a model  [°(2/) P2 9)

¢ Then, for each data point, we can compute a
posterior distribution over cluster membership

¢ This means inferring latent (hidden) variables z

1

vj(r) =Pz =7 |%x,%, 1)
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Maximum likelihood estimation
o At MLE

(™, X", w*) = argmin — Zlongj (xi | pj,25)

it must hold that
N
lu>|f - Zizl Vg (Xi)x’i
j N
Zz’=1 Vi (%4)

- S (xa) (i — ) (%5 — )T

J N
> et V5 (xq)
§ 1
W, = N’YJ’(X@‘)

These equations are coupled = difficult to solve jointly
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Alternating optimization: EM

¢ While not converged

¢ E-step: calculate cluster membership weights (“Expected
sufficient statistics”) for each point:

Calculate y;(x;) for each i and j given estimates of
{4, 22, W from previous iteration

o M-step: Fit clusters to weighted data points
(closed form Maximum likelihood solution!)

Compute [, 22, w given 7Vj (%4)

e.g. N
D et V5 (X)X

fg < N
D im1 Vi (Xi)
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Example fit on
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Bio Assay data

[Andrew Moore]
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Why are mixture models useful?

¢ Can encode assumptions about “shape” of clusters
¢ E.g., fit ellipses instead of points

0.5

% 0.5 1

¢ Can be part of more complex statistical models

e E.g., classifiers (or more generally graphical models)

¢ Probabilistic models can output likelihood P(x) of a
point X
¢ Useful for anomaly detection

21



Clustering for (nonlinear) classification

ri-1 [Andrew Moore]
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Gaussian-Bayes classifiers

» Given labeled dataset DD = {(X1,y1), ceey (XNayN)}
olabel Y; €41,...m}

e Estimate class prior P(y)

¢ Estimate conditional distribution for each class

P(x | y) Zw(y)N (x; Iu]y)7 Z§y))

as Gaussian mlxture model

¢ How do we use this model for classification?

_ Ny) Plxly) l
Plylx) = ~ = P
(' ) 2) ply) P(xly) z Ply) Plly)
W

Cfaq: cc, e P[‘@lx) = Crepnpe P(;)P(V‘J)
' 63 - Za',“ ‘a 23



Resulting classifier

[Andrew
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Anomaly detection with mixture models

Decision
threshold ¢

¢ Can classify data points according to estimated
probability density

25



Anomaly detection

Ccompound =
IL-1

Andrew Moore]
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Probabilistic clustering for large data sets

¢ EM has similar drawbacks as k-means for large data sets

e Need to make one pass through the entire data set
per iteration

o Can we use similar tricks as for k-means to scale to large
data sets?

¢ Online optimization?
o Compressed representation?

27



¢ While not converged

¢ E-step: calculate cluster membership weights (“Expected
sufficient statistics”) for each point:

Calculate y;(x;) for each i and j given estimates of
{4, 22, W from previous iteration

o M-step: Fit clusters to weighted data points
(closed form Maximum likelihood solution!)
Compute [, 22, w given 7Vj (%:) A _
e.g., & /Mo‘

28



Another way to look at EM

¢ Initialize t=0, ,U(O)a E(E)v w&O)

——

¢ While not converged
o Reset: [ =0,2; =0,w; =0

——

e For each example i and component j do

compute ’Yg(Xz)— ( ’M(t) E(t) (t>)

compute  Hj — i + 75 (X)X

Ej — ij -+ "}/j(Xi)XZ'XZT

A

Wy — Wi + 5 (x)
Set t=t+1, and

t - ~ t ~
pi =y B =500 w = dy/N



Can we make EM incremental?

¢ Idea: Update estimates of pu, >, w after each example

¢ Similar as online k-means

30



Stepwise EM

o Initialize t=0, (0 32(0) 4, (0)
» While not converged

¢ For each example x, and component j do

compute 7, (X¢) = v, (x¢ | M(t),z(t)’w(t))

compute ,&j — ,&j + NtV (Xt)(Xt — /lg)
25 = 5 4 0oy (xe) (xex; — 3)

A A

W — Wi + (5 (Xe) — wy)
Set t=t+1, and Ingt) — ﬂj/wj Z;t) — i}j/’d\]j w](t) — Wj

[see also Sato & Ishii ’00, Liang & Klein ‘09] 31



Stepwise EM more generally

Stepwise EM (sEM)
1t «<— initialization; k = 0
for each iterationt =1, ....,7"
for each example 2 = 1, ..., n in random order:
st 3" p(z | xD;0(n) p(x', z) [inference]

p— (1=nmp)p + nesis k — k+1 [towards new]

¢ Works for other latent variable models as well
(e.g., HMMs, ...)

¢ Instead of updating parameters after each example,
often works better when using “mini-batches”

[Liang & Klein ‘09] 32
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log-likelihood

2 4 6 8 10
iterations

Document clustering

Performance of online EM

log-likelihood

-¥= sEM;
-9.8 = sEM;

 J

20 40 60 80
1terations

POS Tagging

[Liang & Klein ‘09] 33



Summary so far

for anomaly

detection;

Geometric Probabilistic
(k-means) (GMM)
Batch Classic K-means |EM Slow
Online Online k-means | Online (stepwise) | Very fast
EM but not
flexible /
robust
Compression | Coresets 'p/’p—-; Fast and
o accurate
Simple More flexible;
interpretation “confidence” (e.g.
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A Geometric Perspective

Gaussian level sets can be expressed purely

%ometrically: 1 1 e
T, D) = exp | —=(x — > (x —
(1.%) = o exp (=50 = 2 o )
1 . i~ N2 :
— exp (—Wdist(z,s)?) affine subspace
V27| s =s(u,X) C R*
S

35



Geometric Reduction

31 [Feldman et al ‘11]

In P(]6) o< —In SF_ w)exp (—Widist(Z, s;)?)
H/“_’/

Soft-min
In P(x|f) > min; W;dist(x,s;) Projective Clustering!
Bound using generalized A-inequality

=» Can apply geometric coreset tools to mixture models



Semi-Spherical Gaussian Mixtures

Subspaces s; can be chosen as points for Semi-spherical GMMs
(covariance eigenvalues Amin < A; < Amax)

2d

[Feldman et al ‘11]

Thm. An e-coreset for k-means in the transformed space
gives a (k,eX\2 /A coreset for semi-spherical GMMs

mzn)

(1—e33=)L(6|D) < L(6C) < (1+ €32=)L(6]D) w.h.p

min m|n 37



Coresets via Adaptive Sampling

[Feldman et al ‘11]

B«~0® D+ D
while D" # ()

S + uniformly sample 10dk In(1) points from D’
1D’

Remove e
B+ BUS

Partition D into Voronoi cells Dy centered at b € B

3 5 dist(ac,B)2 . 1
OC Dg Ty ase el V() = enm

C + sample 10[dk log” nlog(s)/€?*] from D via g

points nearest to S from D’

Thm. (C,~) is a (k, €)-coreset for semi-spherical GMMs

whose covariance matrices have bounded eigenvalues
)\min S >\z S >\maaz

38



Extensions and Generalizations

Coresets for non-spherical GMMs can be obtained
via reduction to recent projective clustering coresets

Other mixtures (e.g. Laplace) based on /4 distances
and other norms via generalized A-inequality

Efficient implementations in Parallel (MapReduce)
and Streaming settings

peyw ap(-lk ;) PO (=l

VA .

I

Gamtan [Af[c ce

39



GMM Coresets on Streams / in parallel

[Feldman et al ‘11]

¥1' T'rr ??'!' ;1'

€ € €

THM: a (k,€)-coreset for a stream of n points € R? can be
computed for e-semi-spherical GMM with prob. > (1 — §)
in space and update time poly(dke~!log(1/d)logn)

THM: a (k,€)-coreset for n points € RY can be computed for
e-semi-spherical GMM with prob. > 1 — § using m machines
in time (n/m)poly(dke~!log(1/6)logn)




Handwritten Digits

Obtain 100-dimensional features from 28x28 pixel
images via PCA. Fit GMM with k=10 components.

52
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Log Likelihood on Test Data Set

j—"‘-— ~ Al

B S ) 23

/¥

Coreset /

7\

Uniform
Sample

;

Full Set

a

2 3
10 10

Training Set Size

10

10

MNIST data:
60,000 training,
10,000 testing
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Neural Tetrode Recordings

Waveforms of neural activity at four co-located electrodes
in a live rat hippocampus. 4 x 38 samples = 152 dimensions.

| . ,/ — — — /6 — ‘\wud\/\‘ﬂ\hﬁw“/WM’\'U)#NWN‘

\
1 |

Coreset;g Full Set _W,L\J,LM%MW\,U/Jw,umwm
500+ ) \ - ,_\AJM»}_\ WP VT B S VJA_’W‘\

I Uniform
Sample
-1000 1 k

15001 }

Log Likelihood on Test Data Set

2 3 - 5
10 10 10 10

Training Set Size T. Siapas et al, Caltech ,



Method comparison

for anomaly
detection;

Geometric Probabilistic
(k-means) (GMM)
Batch Classic K-means |EM Slow
Online Online k-means | Online (stepwise) | Very fast
EM but not
flexible /
robust
Compression | Coresets Coresets Fast and
accurate
Simple More flexible;
interpretation “confidence” (e.g.

43



Case study: Community Seismic Network

[w Clayton, Heaton, Chandy et al.]

mEpsest

‘\--«. 00:00:26
LAY

Detect and monitor earthquakes using inexpensive
accelerometers in cell phones and other consumer devices

44



Classical Hypothesis Testing

Naive: send all accelerometer data to fusion center that
decides Quake (E = 1) vs. No Quake (E = 0)

e
i(E:(I x) Ll(accelerat?ons) S T <
—~ Lo (accelerations)
P( %’OM
Lo L;(accel.) = Placcel. | E = 1 Fusion Center

1M phones produce 3&TB of acceleration data a day!

Centralized s n does not scalﬁ. “M ||

=

45



Decentralized Anomaly Detection

The fusion center receives § — S my “picks” from N
sensors. The optimal decision rule is the hypothesis test:




Controlling False Positive Rates

For rare events, nearly all positives are false positives.

1. False Pick rate po
2. SYBtephrwidd Ralse Alarmerate-Butrols false pick rate

Can learn 7, e.g. online percentile estimation

Pr = Z Bin(S N) < Don’t depend on
S :”alarm” €= (true pick rate)

Controls messages and false alarms without P(z | £ = 1)!

47



Analyzing data on the phone

Acceleration

Y

Time

¢ Removing gravity

48



Analyzing data on the phone

Acceleration

Anomaly threshold
!

.‘Hl W

Time
¢ Calculate “fingerprints” of accelerometer data

(frequency spectra, moments, ...)

¢ Learn (online) statistical models of normal behavior
49



17-dimensional acceleration feature vectors

Learning User Acceleration

Good
0_

Log Likelihood on Test Data Set

Bad

-0

-100

-150 1

-t

F L
j 3
/

;

Full Set

10 10
Training Set Size
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Seismic Anomaly Detection

GMM used for anomaly detection

Good . i...”w ————— ey
0.75T *{/%’IYLI_ ?'-_'%:i ] -
o / _
e %71 Coreset ’[f Full Set
3 A
8 . Uniform |
ralhg Sample
1h]
'g !
- /
T 0.6 ; a .
< /
/ ‘, \
/
0.55f F’
Bad | | | |
1 2 3 4 5
10 10 10 10 10

Training Set Size 51



Joint Threshold Optimization

Maximize detection performance, under constraints
on sensor messages and system false alarm rate

True Pick Rate

. /C' .......... -
max

VA ........ ................. -
| max z

0 False Pick Rate L 0 False Alarm Rate 1

Sensor and Fusion Center thresholds are optimized, e.g. by
grid search, subject to constraints -




Decentralized anomaly detection

o o o o - () Non-pick
—~ @® Picked
@
® © o |© o
O ) )
o o
o © ®) o
5 Cells
o 6 5 0 ° . 20km x 20km
o - © <«
o ° . o 0o © @ | O o
¢ o o ©, © o
@ o 0°o @
o o
e ®

Each cell performs decentralized anomaly detection
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Decentralized anomaly detection

o o o o - () Non-pick
o .
Picked
® © o |© o
o o
© o o o ° o
o
o ° . e 0o © @ | O o
¢ o o ©, © o
o © 0o o
O O
o O

Each cell performs decentralized anomaly detection
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Decentralized anomaly detection

o o o o - () Non-pick
—~ @® Picked
@
@) @) o
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Each cell performs decentralized anomaly detection
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Decentralized anomaly detection

() Non-pick
© Picked

Each cell performs decentralized anomaly detection
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Decentralized anomaly detection

O o O Non-pick
o o @ Picked
1/5
o
1/1
@) @)
o ©
@) @)
@)
o O

¢ Each cell performs decentralized anomaly detection
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Detection probability

Detection performance

0.8 \
‘ 200 cells
0.67 (Greater L.A.),
10 cells
0.4f
0.2f
% 2 40 60
Numger of phones per cell

Preliminary estimate:

(o}

What density of phones
do we need to ensure < 1

false alarm per year?

Larger area protected
=>» More false positives
=>» higher phone density needed

Need ~10k-20k active phones for Greater L.A. area

to detect event of magnitude 5 or higher

58



Empirically compared sensors
and tested pick algorithm on
historic M6-8 quakes.

All 6 events triggered picks
from the phones

Epise

or Phone on table
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Lessons learned: From batch to online

¢ Batch algorithms (SVM, k-means, EM, ...) infeasible for
large data sets

o Key property that allows scaling: Loss function (hinge
loss, quantization error, ...) decomposes additively over
data points

¢ Simple trick to get online algorithms: update parameters
after processing each data point (or small subset)

¢ For supervised learning, loss functions are convex
=>» online convex programming guaranteed to converge

¢ For unsupervised learning, loss typically non-convex
=» online k-means/EM only converge to local optimum

=>» want to “summarize” (compress) data set to do better
61
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