

Data Mining Learning from Large Data Sets

Lecture 10 – Multi-armed bandits

263-5200-00L Andreas Krause

Announcements

Homework 5 out tomorrow

Course organization

Retrieval

- Given a query, find "most similar" item in a large data set
- Determine relevance of search results
- Applications: GoogleGoggles, Shazam, ...
- Supervised learning (Classification, Regression)
 - Learn a concept (function mapping queries to labels)
 - Applications: Spam filtering, predicting price changes, ...
- Unsupervised learning (Clustering, dimension reduction)
 - Identify clusters, "common patterns"; anomaly detection
 - Applications: Recommender systems, fraud detection, ...

Interactive data mining

- Learning through experimentation / from limited feedback
- Applications: Online advertising, opt. UI, learning rankings, ...

Sponsored search

Which ads should be displayed to maximize revenue?

Which news should we display?

Sponsored search

Earlier approaches: Pay by impression
 Go with highest bidder

max_i q_i
ignores "effectiveness" of ads

Key idea: Pay per click!
 Maximize revenue over all ads i

E[revenue_i] = P(click_i| query) q_i

Don't know!
Need to gather
information about
effectiveness!

Bid for ad i (pay per click, known)

k-armed bandits

- Each arm i
 - wins (reward = 1) with fixed (unknown) probability μ_i
 - wins (reward = 0) with fixed (unknown) probability $1-\mu_i$
- All draws are independent given $\mu_1,..., \mu_k$
- How should we pull arms to maximize total reward?

Stochastic k-armed bandits

- Discrete set of k choices
- Each choice (arm) i associated with unknown probability distribution P_i supported in [0,1]
- Play game for T rounds
- In each round t, we pick an arm i, and obtain an random sample X_t from P_i independent of previous samples
- Our goal is to maximize $\sum_{t=1}^{\infty} X_t$

Online optimization with limited feedback

Choices	X_1		
a_1			
a_2	0		
a _n			

Reward Time

Total: $\sum_{t} X_{t} \rightarrow max$

- Like in online (supervised) learning:
 - Have a make a choice each time
- Unlike online learning:
 - Only receive information about chosen action

Solving the bandit problem

- Optimal policy can be found for k independent arms with known prior distribution [Gittins '79]
 - Terribly hard to analyze any more complex settings
- Modern view: "No-regret" instead of optimality
 - Often easier to analyze!

Performance metric: Regret

- Let μ_i be the mean of P_i
- Payoff of best arm: $\mu^* = \max_i \mu_i$
- Let i₁,...,i_T be the sequence of arms pulled
- Instantaneous regret at time t: $r_t = \mu^* \mu_{i_t}$
- Total regret: $R_T = \sum_{t=1}^T r_t$
- Typical goal: Want allocation strategy that guarantees

$$R_T/T \rightarrow 0$$
 as $T \rightarrow \infty$

Allocation strategies

• If we knew the mean payoffs, which arm would we pull?

What if we only care about estimating the payoffs?

Pidz each choice equally offen, &

Estimate
$$\mu_i = \frac{1}{2} \sum_{j=1}^{2} X_{ij}$$

Regret: $R_T = T_{\xi} \sum_{j=1}^{2} (\mu^* - \mu_i)$

Exploration—Exploitation Tradeoff

 Need to trade off exploration (gathering data about payoffs) and exploitation (making choices based on data already gathered)

Exploration—Exploitation Tradeoff

- For t=1:T
 - Set $\varepsilon_t = \mathcal{O}(1/t)$
 - With probability ε_t : **Explore** by picking arm uniformly at random
 - \bullet With probability $1-\varepsilon_t$: Exploit by picking arm with highest empirical mean payoff
- Theorem [Auer et al '02] For suitable choice of ε_t it holds that

$$R_T = O(k \log T) \qquad \Rightarrow \qquad \frac{R_T}{T} = O(\frac{k \ln T}{T})$$

Issues with epsilon greedy

- "Not elegant": Algorithm explicitly distinguishes between exploration and exploitation
- More importantly: Exploration chooses clearly suboptimal choices with equal probability

Comparing arms

- Suppose have done some experiments
 - Arm 1: .1 .2 .1 .3 0 .2 .1 .2
 - Arm 2: .6
 - Arm 3: .7 .8 .6 .8 .7 .9 .8 .7
- Means:
 - Arm 1: .15, Arm 2: .6, Arm 3: .75
- Which arm would you pick next?
- Idea: Not just look at mean, but also confidence!

Upper confidence based selection

Calculating confidence bounds

- Suppose we fix arm i
- Let Y₁,...,Y_m be the payoffs of arm i in the first m trials
 - By assumption, they are independent trials with distribution P(Y)
- ullet Mean payoff: $\mu=\mathbb{E}[Y]$

• Our estimate:
$$\hat{\mu}_m = \frac{1}{m} \sum_{\ell=1}^m Y_\ell$$

- Want to obtain b such that w.h.p. $|\mu \hat{\mu}_m| \leq b$
- ullet Also want and b to be as small as possible (why?)
- How can we bound $P(|\mu \hat{\mu}_m| \leq b)$?

Hoeffding's inequality

Let X₁,...,X_m be i.i.d. random variables taking values in [0,1]

$$\mu = \mathbb{E}[X] \qquad \qquad \hat{\mu}_m = \frac{1}{m} \sum_{\ell=1}^m X_\ell$$

Then

$$P(|\mu - \hat{\mu}_m| \ge b) \le 2 \exp\left(-2b^2 m\right) = 0$$

$$b = \frac{c}{\sqrt{m}}$$

How large should
$$C$$
 be? $e^{-2c^2} \leq S/2$

$$\Rightarrow -2c^2 \leq \ln S/2$$

$$\Rightarrow c^2 \leq \ln S/2$$

The UCB1 algorithm [Auer et al '02]

• Set
$$\hat{\mu}_1 = \dots = \hat{\mu}_k = 0$$
 $n_1 = \dots = n_k = 0$

- For t = 1:T
 - ullet For each arm i calculate $UCB(i) = \hat{\mu}_i + \sqrt{\frac{2 \ln t}{n_i}}$

- Pick arm $j = \arg\max_i UCB(i)$ and observe y_t Set $n_j \leftarrow n_j + 1$ and $\hat{\mu}_j \leftarrow \hat{\mu}_j + \frac{1}{n_i}(y_t \hat{\mu}_j)$

"Optimism in the face of uncertainty"

Performance of UCB

- Theorem [Auer et al 2002]
 - ullet Suppose the optimal mean payoff is $\mu^* = \max_i \mu_i$ and for each arm let $\Delta_i = \mu^* \mu_i$
 - Then it holds that

$$\mathbb{E}[R_T] = \begin{bmatrix} 8 \sum_{i:\mu_i < \mu^*} \left(\frac{\ln T}{\Delta_i}\right) \end{bmatrix} + \left(1 + \frac{\pi^2}{3}\right) \left(\sum_{i=1}^k \Delta_i\right)$$

$$=) O(\frac{R_T}{T}) = \left(\frac{k h T}{T}\right)$$

Summary so far

- k-armed bandit problem as a formalization of the exploration-exploitation tradeoff
- Analog of online optimization (e.g., online SVM), but with limited feedback
- Simple algorithms are able to achieve no regret
 - Epsilon-greedy
 - Upper confidence sampling

Applications of bandit algorithms

- Clinical trials
- Matching markets
- Asset pricing
- Adaptive routing
- Computer Go
- Data mining:
 - Online advertising
 - Scheduling web crawlers
 - Optimizing user interfaces
 - Learning to optimize relevance

...

Extensions

- Infinite-armed bandits
- Dueling bandits
- Contextual bandits
- Bandits in metric spaces
- Mortal bandits
- Restless bandits
- Bandit slates
- ...

Challenges in recommendation

- Number of recommendations k to choose from large
 - Similar ads → similar click-through rates!
- Performance depends on query / context
 - Similar queries similar click-through rates!
- Need to compile sets of k recs. (instead of only one)
 - Similar sets → similar click-through rates!
- Key question: How do we model and exploit "similarity"??

Infinite-armed bandits

- In many applications, number of arms is huge (sponsored search, parameter optimization, learning relevance of web pages)
- May not be able to try each arm even once
- Need assumptions on how payoffs are related!

Stochastic ∞-armed bandits

- (Possibly infinite) Set X of choices
- Class F of functions on X
- Each choice x in X associated with (unknown) probability distribution P_x supported in [0,1] with means $\mu_x = f(x)$ for some $f \in F$
- Play game for T rounds
- In each round t, we pick an arm x, and obtain an random sample Y_t from P_x independent of previous samples T
- Our goal is to maximize $\sum_{t=1}^{\infty} Y_t$

Assumptions on *f*

Fast convergence; $R_T = \mathcal{O}^*(d\sqrt{T})$ But strong assumption

What if we believe, the function looks like:

Want flexible way to encode assumptions about functions!

A Bayesian approach

Bayesian models for functions

Prior P(f)
Likelihood P(data | f)

Regression with uncertainty about predictions!

Gaussian Processes to model payoff f

Normal dist. (1-D Gaussian)

Multivariate normal (n-D Gaussian)

Gaussian process (∞-D Gaussian)

- Gaussian process (GP) = normal distribution over functions
- Finite marginals are multivariate Gaussians P(F(x)) = W(x)
- Closed form formulae for Bayesian posterior update exist
- Parameterized by covariance function K(x,x') = Cov(f(x),f(x'))

Gaussian process

A Gaussian Process (GP) is an

(infinite) set of random variables, indexed by some set X i.e., for each x in X there's a random variable Y, where there exists functions $\mu:X o\mathbb{R}$ $\mathcal{K}:X imes X o\mathbb{R}$ such that for all $A\subseteq X$, $A=\{x_1,\ldots,x_k\}$ it holds that $Y_A = [Y_{x_1}, \dots, Y_{x_k}] \sim \mathcal{N}(\mu_A, \Sigma_{AA})$

where
$$\Sigma_{AA} = \begin{pmatrix} \mathcal{K}(x_1, x_1) & \mathcal{K}(x_1, x_2) & \dots & \mathcal{K}(x_1, x_n) \\ \vdots & & & \vdots \\ \mathcal{K}(x_k, x_1) & \mathcal{K}(x_k, x_2) & \dots & \mathcal{K}(x_k, x_k) \end{pmatrix} \quad \mu_A = \begin{pmatrix} \mu(x_1) \\ \mu(x_2) \\ \vdots \\ \mu(x_k) \end{pmatrix}$$

K is called kernel (covariance) function μ is called **mean** function

Kernel functions

K must be symmetric

$$K(x,x') = K(x',x)$$
 for all x, x'

K must be positive definite

For all A: Σ_{AA} is positive definite matrix

• Kernel function K: assumptions about correlation!

• Squared exponential kernel $K(x,x') = \exp(-(x-x')^2/h^2)$

Samples from P(f)

Bandwidth h=.3

Bandwidth h=.1

Exponential kernel K(x,x') = exp(-|x-x'|/h)

Bandwidth h=.3

• Linear kernel: $K(x,x') = x^T x'$

Corresponds to linear regression!

Linear kernel with features:

$$K(x,x') = \Phi(x)^{T}\Phi(x')$$

Making predictions with GPs

• Suppose $P(f) = GP(f; \mu, \mathcal{K})$

and we observe
$$y_i = f(\mathbf{x}_i) + \epsilon_i$$
 $A = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$

- Then $P(f \mid \mathbf{x}_1, \dots, \mathbf{x}_k, y_1, \dots, y_k) = GP(f; \mu', \mathcal{K}')$
- In particular,

$$P(f(x) \mid \mathbf{x}_1, \dots, \mathbf{x}_k, y_1, \dots, y_k) = \mathcal{N}(f(x); \mu_{x|A}, \sigma_{x|A}^2)$$

where
$$\mu_{x|A} = \mu(\mathbf{x}) + \mathbf{\Sigma}_{x,A} (\mathbf{\Sigma}_{AA} + \sigma^2 \mathbf{I})^{-1} (\mathbf{y}_A - \underline{\mu}_A)$$

$$\sigma_{x|A}^2 = \mathcal{K}(\mathbf{x}, \mathbf{x}) - \mathbf{\Sigma}_{x,A} (\mathbf{\Sigma}_{AA} + \sigma^2 \mathbf{I})^{-1} \mathbf{\Sigma}_{x,A}^T$$

Closed form formulas for prediction!

Illustrations: Predictions in GPs

Gaussian process (bandit) optimization

Goal: Adaptively pick inputs $x_1, x_2, ...$ such that

$$\frac{1}{T} \sum_{t=1}^{T} [f(x^*) - f(x_t)] \to 0$$

Average regret

Key question: how should we pick samples?

Several commonly used heuristics:

- Expected Improvement [Močkus et al. '78]
- Most Probable Improvement [Močkus '89]
- Used successfully in machine learning
 [Ginsbourger et al. '08, Jones '01, Lizotte et al. '07]
- Let's get some intuition

Simple algorithm for GP optimization

In each round t do:

• Pick
$$x_t = \arg\max_{x \in D} \mu_{t-1}(x)$$

- Observe $y_t = f(x_t) + \epsilon_t$
- ullet Use Bayes' rule to get posterior mean $\mu_t(\cdot)$

Uncertainty sampling

Pick:

$$x_t = \arg\max_{x \in D} \sigma_{t-1}^2(x)$$

Wastes samples by exploring f everywhere!

Avoiding unnecessary samples

Key insight: Never need to sample where upper confidence limit < best lower bound!

Upper confidence sampling

Pick input that maximizes upper confidence bound:

Naturally trades off exploration and exploitation Does not waste samples (with high prob.)