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Problem 1 (Linear Regression and Ridge Regression):

Let D = {(x1, y1), (x2, y2), . . . (xn, yn)} where xi ∈ Rd and yi ∈ R be the training data that you are given. As
you have to predict a continuous variable, one of the simplest possible models is linear regression, i.e. to predict
y as wTx for some parameter vector w ∈ Rd.1 We thus suggest minimizing the following loss

argmin
w

R̂(w) = argmin
w

n∑
i=1

(
yi −wTxi

)2
. (1)

Let us introduce the n×d matrix X ∈ Rn×d with the xi as rows, and the vector y ∈ Rn consisting of the scalars
yi. Then, (1) can be equivalently re-written as

argmin
w

‖Xw − y‖2.

We refer to any w∗ that attains the above minimum as a solution to the problem.

(a) Show that if XTX is invertible, then there is a unique w∗ that can be computed as w∗ =
(
XTX

)−1
XTy.

(b) Show for n < d that (1) does not admit a unique solution. Intuitively explain why this is the case.

(c) Consider the case n ≥ d. Under what assumptions on X does (1) admit a unique solution w∗? Give an
example with n = 3 and d = 2 where these assumptions do not hold.

The ridge regression optimization problem with parameter λ > 0 is given by

argmin
w

R̂Ridge(w) = argmin
w

[
n∑
i=1

(
yi − wTxi

)2
+ λwTw

]
. (2)

(d) Show that R̂Ridge(w) is convex with regards to w. You can use the fact that a twice differentiable function
is convex if and only if its Hessian H ∈ Rd×d satisfies wTHw ≥ 0 for all w ∈ Rd (is positive semi-definite).

(e) Derive the closed form solution w∗
Ridge =

(
XTX + λId

)−1
XTy to (2) where Id denotes the identity matrix

of size d× d.

(f) Show that (2) admits the unique solution w∗
Ridge for any matrix X. Show that this even holds for the cases

in (b) and (c) where (1) does not admit a unique solution w∗.

(g) What is the role of the term λwTw in R̂Ridge(w)? What happens to w∗
Ridge as λ→ 0 and λ→∞?

1Without loss of generality, we assume that both xi and yi are centered, i.e. they have zero empirical mean. Hence we can neglect
the otherwise necessary bias term b.



Problem 2 (Normal Random Variables):

Let X be a Normal random variable with mean µ ∈ R and variance τ2 > 0, i.e. X ∼ N (µ, τ2). Recall that the
probability density of X is given by

fX(x) =
1√
2πτ

e−(x−µ)2/2τ2

, −∞ < x <∞.

Furthermore, the random variable Y given X = x is normally distributed with mean x and variance σ2, i.e.
Y |X=x ∼ N (x, σ2).

(a) Derive the marginal distribution of Y , i.e. compute the density fY (y).

(b) Use Bayes’ theorem to derive the conditional distribution of X given Y = y.

Hint: For both tasks derive the density up to a constant factor and use this to identify the distribution.

Problem 3 (Bivariate Normal Random Variables):

Let X be a bivariate Normal random variable (taking on values in R2) with mean µ = (1, 1) and covariance
matrix Σ = ( 3 1

1 2 ). The density of X is then given by

fX(x) =
1√

(2π)2 det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Find the conditional distribution of Y = X1 +X2 given Z = X1 −X2 = 0.

2


