Exercises Introduction to Machine Learning FS 2018

Series 2, Mar 5th, 2018 (Model selection and Classification)

Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: https://las.inf.ethz.ch/teaching/introml-s18 Email questions to: Harun Mustafa, harun.mustafa@inf.ethz.ch

We will publish sample solutions on Friday, Mar 16th.

Problem 1 (Model selection and cross-validation):

Suppose we are given a noise-free set of points $X = \{x_i\}_{i=1}^n \subset (-1,1), Y = \{\sin(x_i)\}$, which we want to fit with a polynomial, but we do not know which degree to choose. Suppose our candidate polynomial families are $\mathcal{P}_k = \{\mathbb{P}_{2i+1}\}_{i=0}^k$, where \mathbb{P}_{2i+1} denotes the family of polynomials with real-valued coefficients of maximum degree 2i + 1. We want to find the optimal hyperparameter value $\hat{k} \in \{1, \dots, k\}$.

Given a family of polynomials $\mathbb{P}_{2\ell+1}$ and a training set, suppose we have an oracle (i.e. an exact algorithm) that is able to find the polynomial $\hat{p} \in \mathbb{P}_{2\ell+1}$ with optimal coefficients with respect to the square loss objective

$$\mathcal{L}(X, Y, p) = \sum_{i=1}^{n} (y_i - p(x_i))^2, \quad p \in \mathbb{P}_{2\ell+1}$$

- 1. Show that when the optimization is performed on each family in \mathcal{P}_k , the lowest score is achieved when $\hat{p} \in \mathbb{P}_{2k+1} \setminus \mathbb{P}_{2k-1}$ (i.e., \hat{p} will be of degree 2k + 1).
- 2. What potential issue with using cross-validation does this demonstrate?
- 3. Suppose we add noise to the data, $\tilde{Y} = \{y_i + \varepsilon_i\}_{i=1}^n$, where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$. For which values of σ^2 will the result from part 1 hold with > 95% probability?
- 4. Suppose we widen the boundaries of X to $(-2\pi, 2\pi)$. Write a short script to simulate samples (X_i, \tilde{Y}_i) with different values of σ_i^2 and use 10-fold cross-validation to find corresponding optimal values \hat{k}_i . How do $\mathcal{L}(X_i, \hat{Y}_i, p)$ and \hat{k}_i behave as k and σ^2 increase?

Problem 2 (Classification):

Consider the data set plotted below,

Show that $a = \frac{1}{||w||}$. How would L_2 regularization on w affect the margin around $w^T x = 0$?