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Problem 1 (Perceptron/SVM):

1. a) How does the perceptron algorithm relate to stochastic gradient descent?

b) How does the perceptron objective relate to the support vector machine objective?

c) Write down the training objective for the SVM and derive the gradient updates using stochastic
gradient descent. Assume a minibatch size of B.

2. The perceptron in its original formulation uses a 0/1 loss function (shown below, solid). A surrogate loss
function lp(w;x, y) = max(0,−ywTx) is instead used in optimisation (dashed). We see that this surrogate
loss is a poor match for the 0/1 loss near zero. Suppose we try (shown in dotted line):
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a) Show that f(x) =
√
x is not convex.

b) Show that f(x) = xp is convex for all p ∈ N>0 and x ∈ [0,∞). (Hint: use properties of derivatives
of convex functions.)



Problem 2 (Feature Selection):

(Exercise 13.5 from Machine Learning: A Probabilistic Perspective by Kevin P. Murphy) We covered ridge (l2-
regularised) and l1-regularised (lasso) regression in class. A hybrid version called elastic net exists which uses
both l1 and l2 regularisation terms:

JEL = ‖y −Xw‖2 + λ1‖w‖1 + λ2‖w‖2

Defining
J2 = ‖ỹ − X̃w‖2 + cλ1‖w‖1

where c = (1 + λ2)
−1/2 and

X̃ = c

(
X√
λ2Id

)
, ỹ =

(
y

0d×1

)
show that

arg minwJEL(w) = c(argminwJ2(w)))

This implies that an elastic net problem can be solved as a lasso problem, using modified data.

Problem 3 (Kernels):

a) For x,x′ ∈ Rd, and K(x,x′) = (xTx′ + 1)2, find a feature map φ(x), such that k(x,x′) = φ(x)>φ(x′).

b) For the dataset X = {xi}i=1,2 = {(−3, 4), (1, 0)} and the feature map φ(x) = [x(1), x(2), ‖x‖], calculate
the Gram matrix (for a vector x ∈ R2 we denote by x(1), x(2) its components).
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