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Recall: Least-squares linear regression optimization 

[Legendre 1805, Gauss 1809] 

Given data set 

 

 

 

 

 

 

Last lecture, discussed how to solve using closed form 

& gradient descent 
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Supervised learning summary so far 
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Model/ 

objective:  

Loss-function 
Squared loss, lp loss 

Method:  Exact solution, Gradient Descent 

Representation/ 

features 

Linear hypotheses 

Evaluation 

metric:  
Empirical risk = (mean) squared error 



Recall: Important choices in regression 
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What types of functions f should we consider? Examples 

 

 

 

 

 

 

How should we measure goodness of fit? 
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Fitting nonlinear functions 
How about functions like this: 
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Linear regression for polynomials 
We can fit non-linear functions via linear regression, 

using nonlinear features of our data (basis functions) 
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Demo: Linear regression on polynomials 
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Underfitting 

Overfitting 



Supervised learning summary so far 
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Model/ 

objective:  

Loss-function 
Squared loss, lp-loss 

Method:  Exact solution, Gradient Descent 

Representation/ 

features 

Linear hypotheses, nonlinear hypotheses through  

feature transformations 

Evaluation 

metric:  
Mean squared error 



Model selection for linear regression with polynomials 
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Degree of polynomial 

E
rr
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Prediction 

error 

Training error 

How can we estimate this? 

Best 

model 



Interlude: A note on probability 
You‘ll need to know about basic concepts in 

probability: 

Random variables 

Expectations (Mean, Variance etc.) 

Independence (i.i.d. samples from a distribution, ...) 

... 
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Example: Gaussian distribution 

   = Standard deviation 

   = mean 
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Example: Multivariate Gaussian 
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Interlude: Expectations 
Expected value of random variable X 

 

 

Expected value of some function of X 

 

 

 

 

Linearity of expectation 
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Achieving generalization 
Fundamental assumption: Our data set is generated 

independently and identically distributed (iid) from 

some unknown distribution P 

 

 

 

Our goal is to minimize the expected error (true risk) 

under P 
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Side note on iid assumption 
When is iid assumption invalid? 

Time series data 

Spatially correlated data 

Correlated noise 

… 

 

Often, can still use machine learning, but one has to 

be careful in interpreting results. 

Most important: Choose train/test to assess the 

desired generalization  
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Estimating the generalization error 
Estimate the true risk by the empirical risk on a 

sample data set D 

 

 

 

Why might this work? 

 

Law of large numbers 

for any fixed w almost surely as 
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What happens if we optimize on training data? 

Suppose we are given training data 

 

Empirical Risk Minimization: 

 

Ideally, we wish to solve  
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Empirical vs true risk 
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Generalization 

error 

n=100 



Empirical vs true risk 
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R
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Generalization 

error 

n=1000 



Empirical vs true risk 
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Generalization 

error 

n=10000 



Outlook: Requirements for learning 
For learning via empirical risk minimization to be 

successful, need uniform convergence: 

 

 

 

This is not implied by law of large numbers alone,  

but depends on model class (holds, e.g., for squared 

loss on data distributions with bounded support) 

 Statistical learning theory 
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What can go wrong in ERM 

23 

R
is

k
 

n=100 



What can go wrong in ERM 
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What can go wrong in ERM 
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n=10000 



Learning from finite data 
Law of large numbers / uniform convergence are 

asymptotic statements (with n  ∞) 
In practice one has finite amount of data. 

 

What can go wrong? 
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Simple example 
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What if we evaluate performance on training data? 

 

 

In general, it holds that 

 

 

 

 

 

 

 

Thus, we obtain an overly optimistic estimate! 
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More realistic evaluation? 
Want to avoid underestimating the prediction error 

Idea: Use separate test set from the same distribution P 

Obtain training and test data     and   

Optimize w on training set 

 

 

Evaluate on test set 

 

 

Then:  
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Why? 
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Evaluating predictive performance 
Training error (empirical risk) systematically 

underestimates true risk 

 

 

Using an independent test set avoids this bias 
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First attempt: Evaluation for model selection 

Obtain training and test data     and   

Fit each candidate model (e.g., degree m of polynomial) 

 

 

Pick one that does best on test set: 

 

 

Do you see a problem? 
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Overfitting to test set 

Test error is itself random! Variance usually increases 

for more complex models 

Optimizing for single test set creates bias 
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