

Introduction to Machine Learning

Generalization and Model Validation

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

Recall: Least-squares linear regression optimization

[Legendre 1805, Gauss 1809]

- Given data set $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$

$$\hat{\mathbf{w}} = \arg \min_{\mathbf{w}} \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- Last lecture, discussed how to solve using closed form & gradient descent

Supervised learning summary so far

Representation/
features

Linear hypotheses

Model/
objective:

Loss-function

Squared loss, l_p loss

Method:

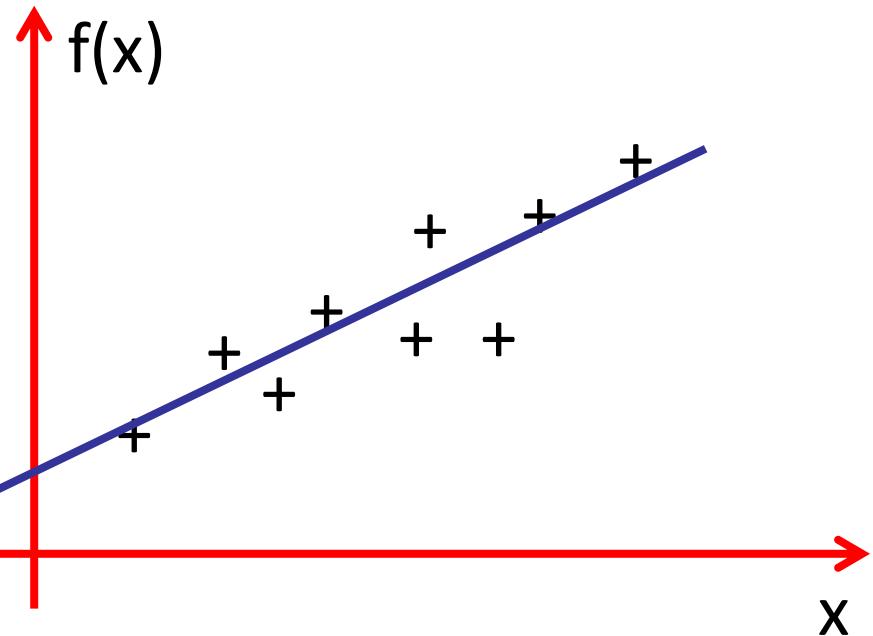
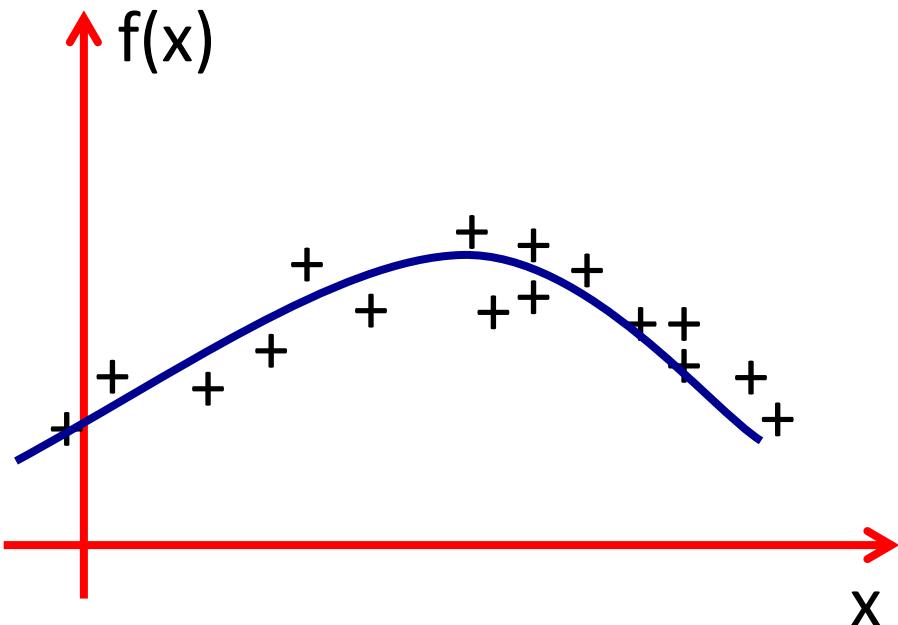
Exact solution, Gradient Descent

Evaluation
metric:

Empirical risk = (mean) squared error

Recall: Important choices in regression

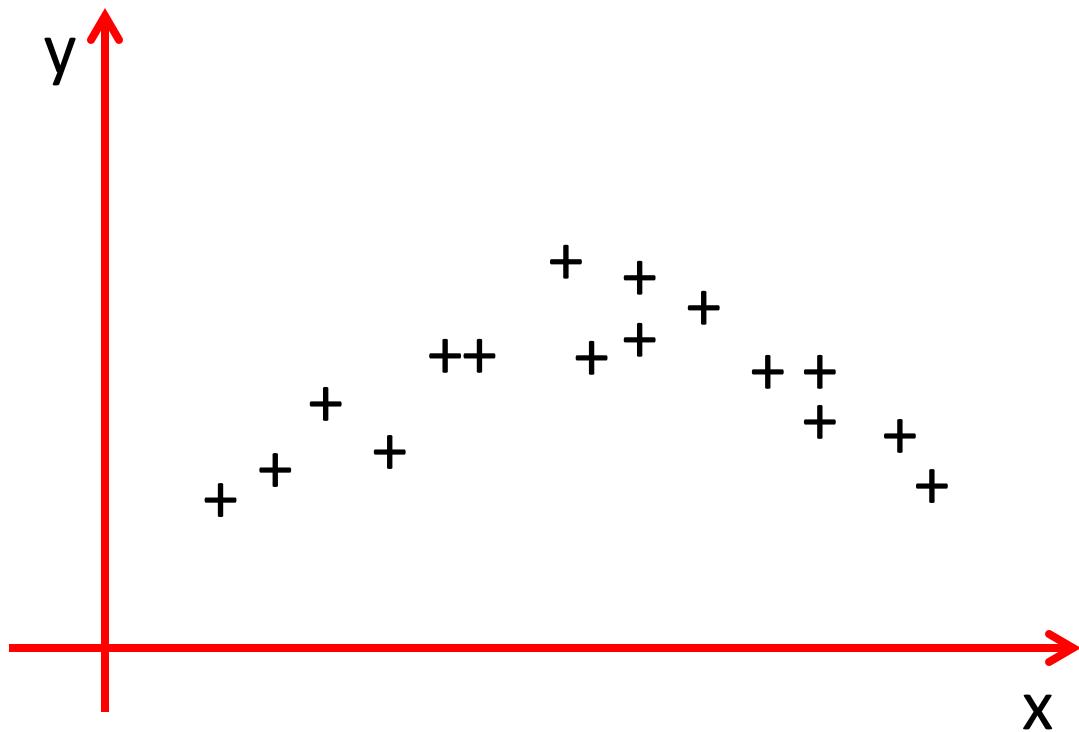
- What types of functions f should we consider? Examples



- How should we measure **goodness of fit**?

Fitting nonlinear functions

- How about functions like this:

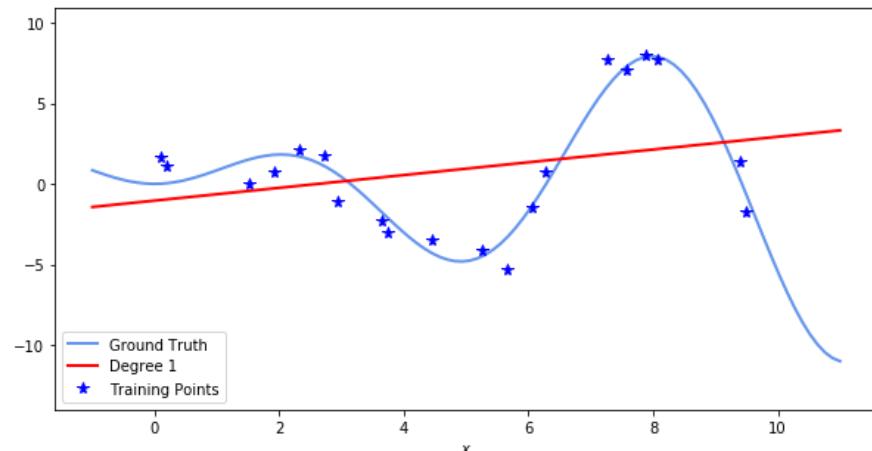
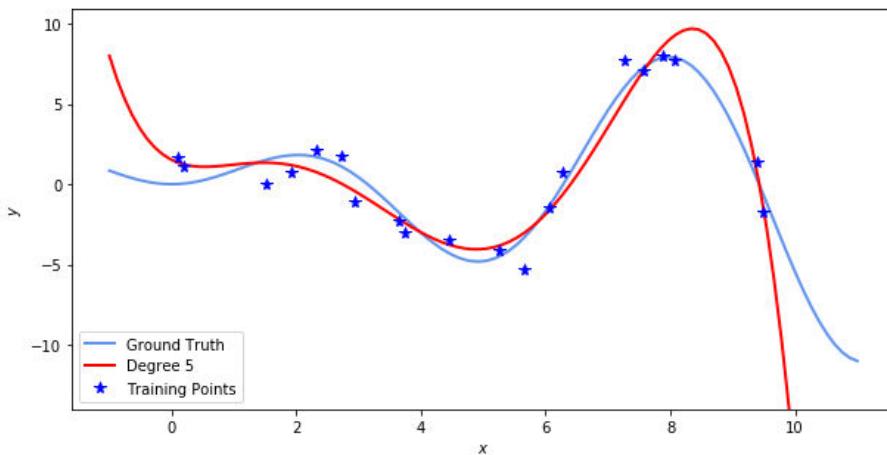
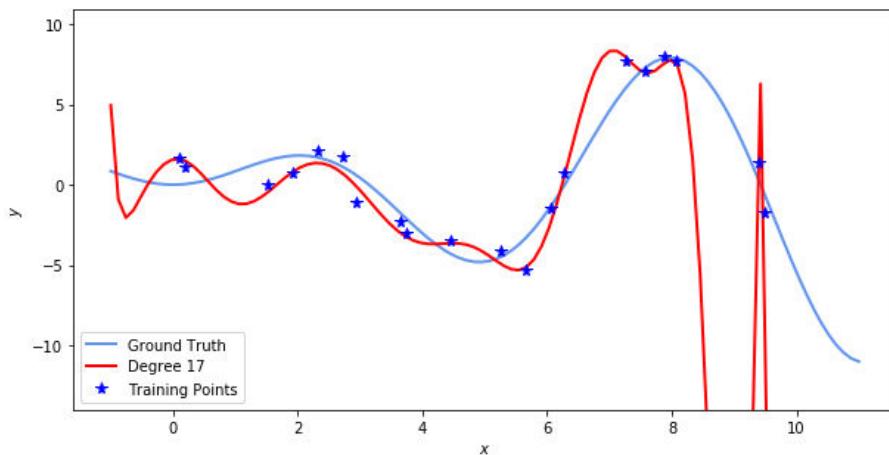


Linear regression for polynomials

We can fit **non-linear functions** via **linear regression**, using nonlinear features of our data (basis functions)

$$f(\mathbf{x}) = \sum_{i=1}^d w_i \phi_i(\mathbf{x})$$

Demo: Linear regression on polynomials



Supervised learning summary so far

Representation/
features

Linear hypotheses, [nonlinear hypotheses through
feature transformations](#)

Model/
objective:

Loss-function

Squared loss, l_p -loss

Method:

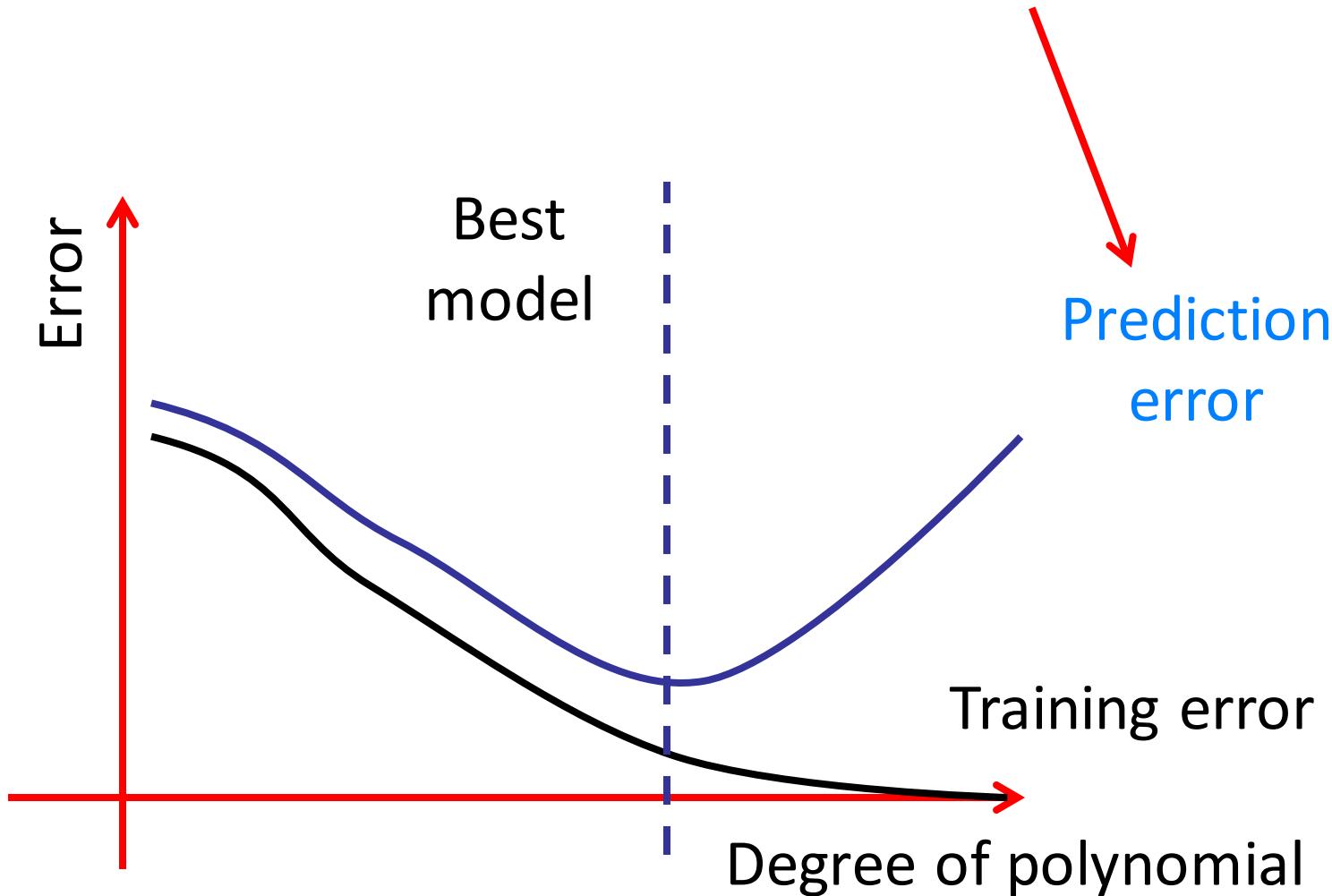
Exact solution, Gradient Descent

Evaluation
metric:

Mean squared error

Model selection for linear regression with polynomials

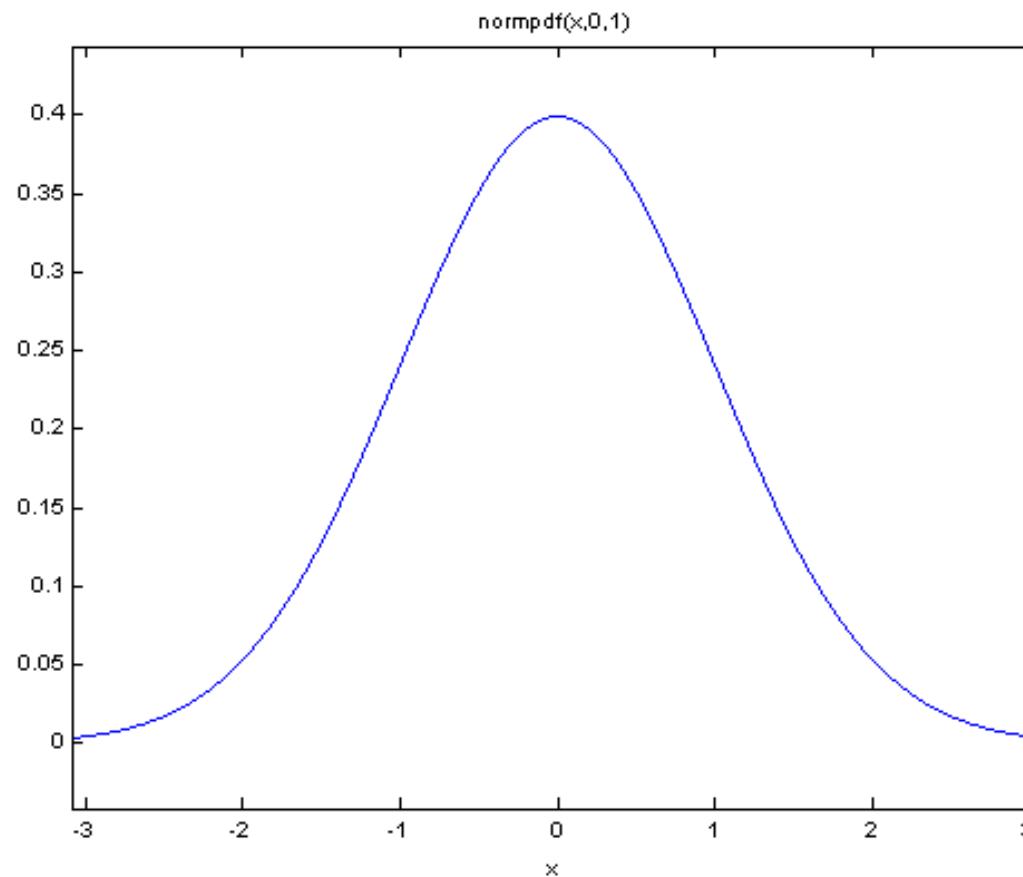
How can we estimate this?



Interlude: A note on probability

- You'll need to know about basic concepts in probability:
 - Random variables
 - Expectations (Mean, Variance etc.)
 - Independence (i.i.d. samples from a distribution, ...)
 - ...

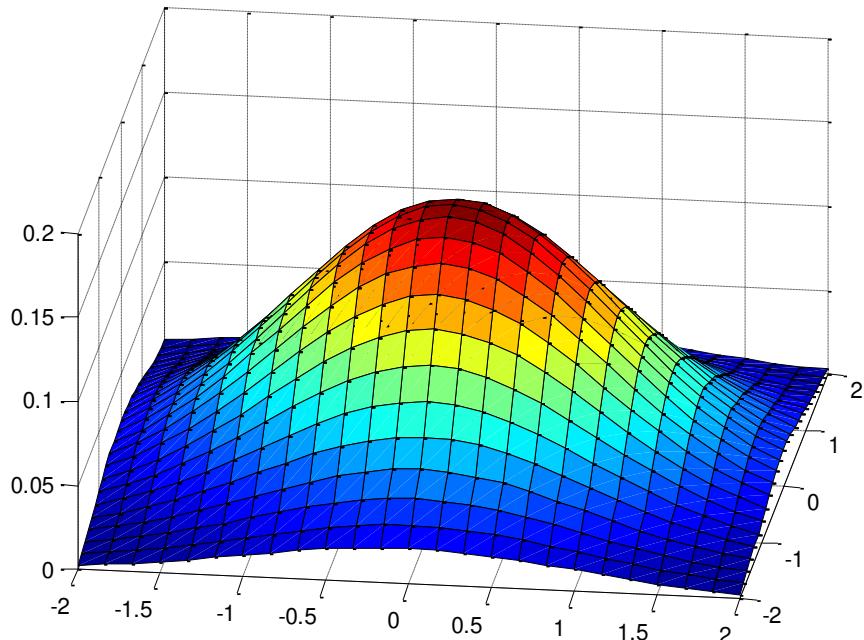
Example: Gaussian distribution



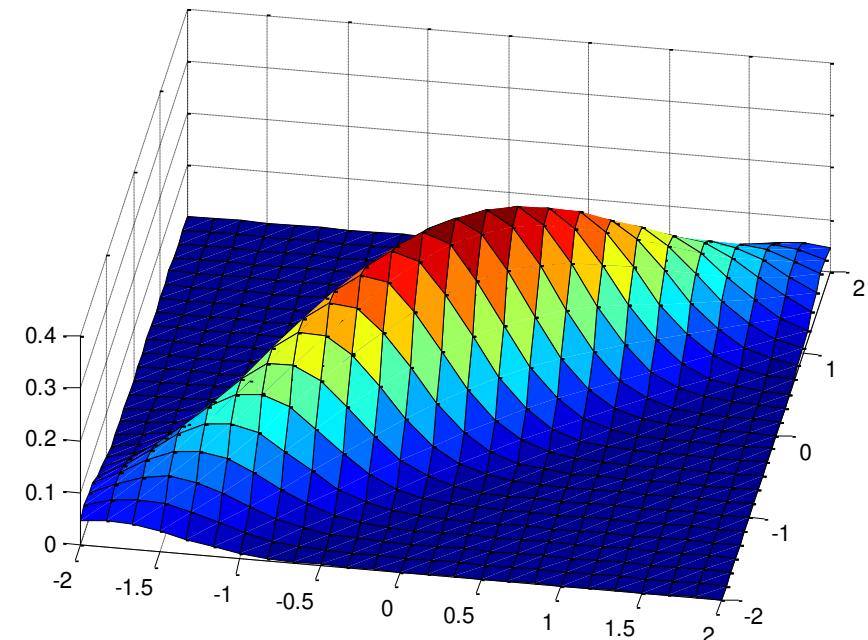
- σ = Standard deviation $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- μ = mean

Example: Multivariate Gaussian

$$\frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu)\right) \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix} \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$



$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



$$\Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$$

Interlude: Expectations

- Expected value of random variable X
- Expected value of some function of X
- Linearity of expectation

Achieving generalization

- Fundamental assumption: Our data set is generated **independently and identically distributed (iid)** from some **unknown** distribution P

$$(\mathbf{x}_i, y_i) \sim P(\mathbf{X}, Y)$$

- Our goal is to minimize the ***expected error (true risk)*** under P

$$\begin{aligned} R(\mathbf{w}) &= \int P(\mathbf{x}, y) (y - \mathbf{w}^T \mathbf{x})^2 d\mathbf{x} dy \\ &= \mathbb{E}_{\mathbf{x}, y} [(y - \mathbf{w}^T \mathbf{x})^2] \end{aligned}$$

Side note on iid assumption

- When is iid assumption invalid?
 - Time series data
 - Spatially correlated data
 - Correlated noise
 - ...
- Often, can still use machine learning, but one has to be careful in interpreting results.
- Most important: Choose train/test to assess the desired generalization

Estimating the generalization error

- Estimate the **true risk** by the **empirical risk** on a sample data set D

$$\hat{R}_D(\mathbf{w}) = \frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} (y - \mathbf{w}^T \mathbf{x})^2$$

- Why might this work?

Law of large numbers $\hat{R}_D(\mathbf{w}) \rightarrow R(\mathbf{w})$
for any fixed \mathbf{w} almost surely as $|D| \rightarrow \infty$

What happens if we optimize on training data?

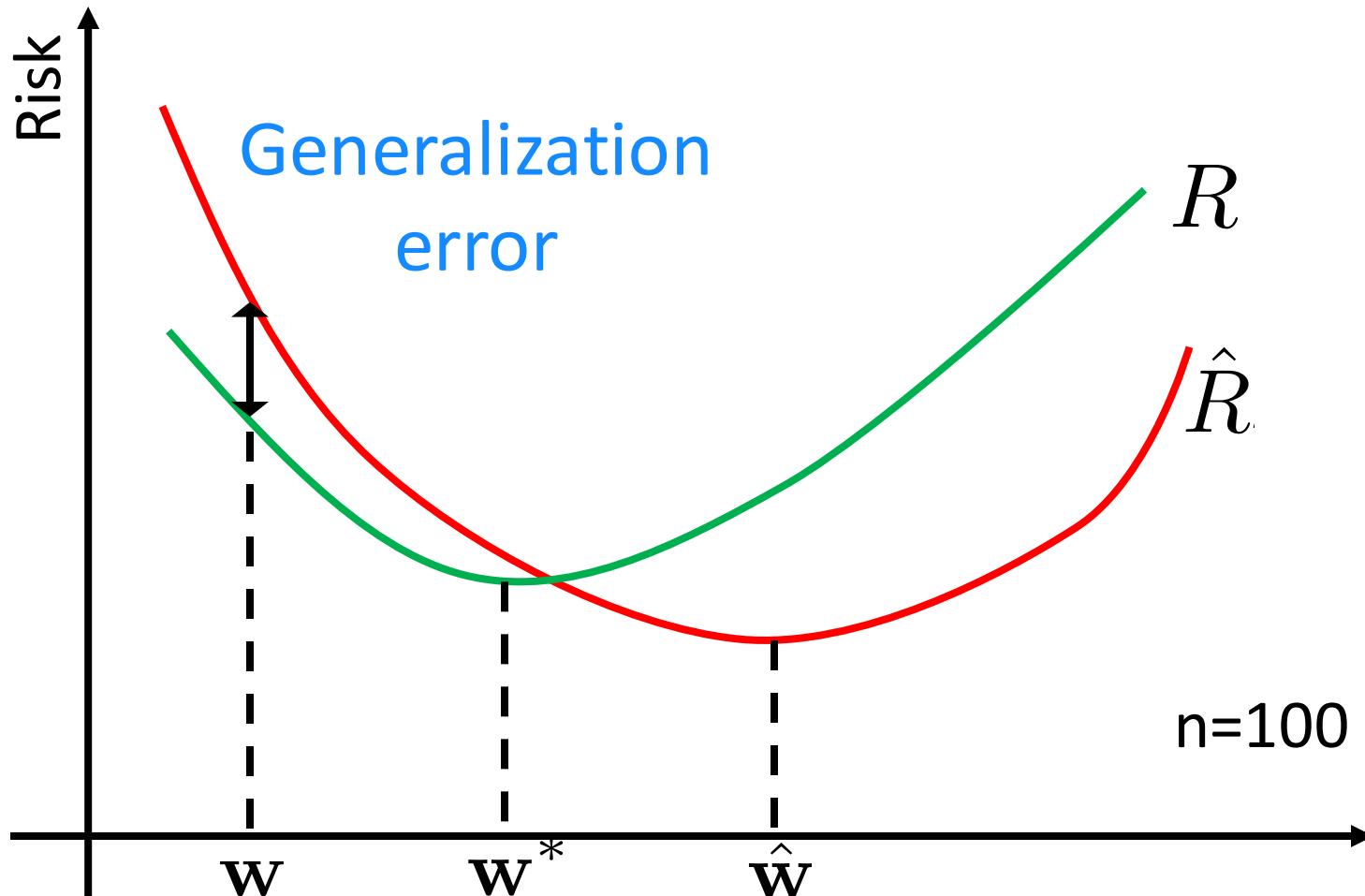
- Suppose we are given training data D

Empirical Risk Minimization: $\hat{\mathbf{w}}_D = \operatorname{argmin}_{\mathbf{w}} \hat{R}_D(\mathbf{w})$

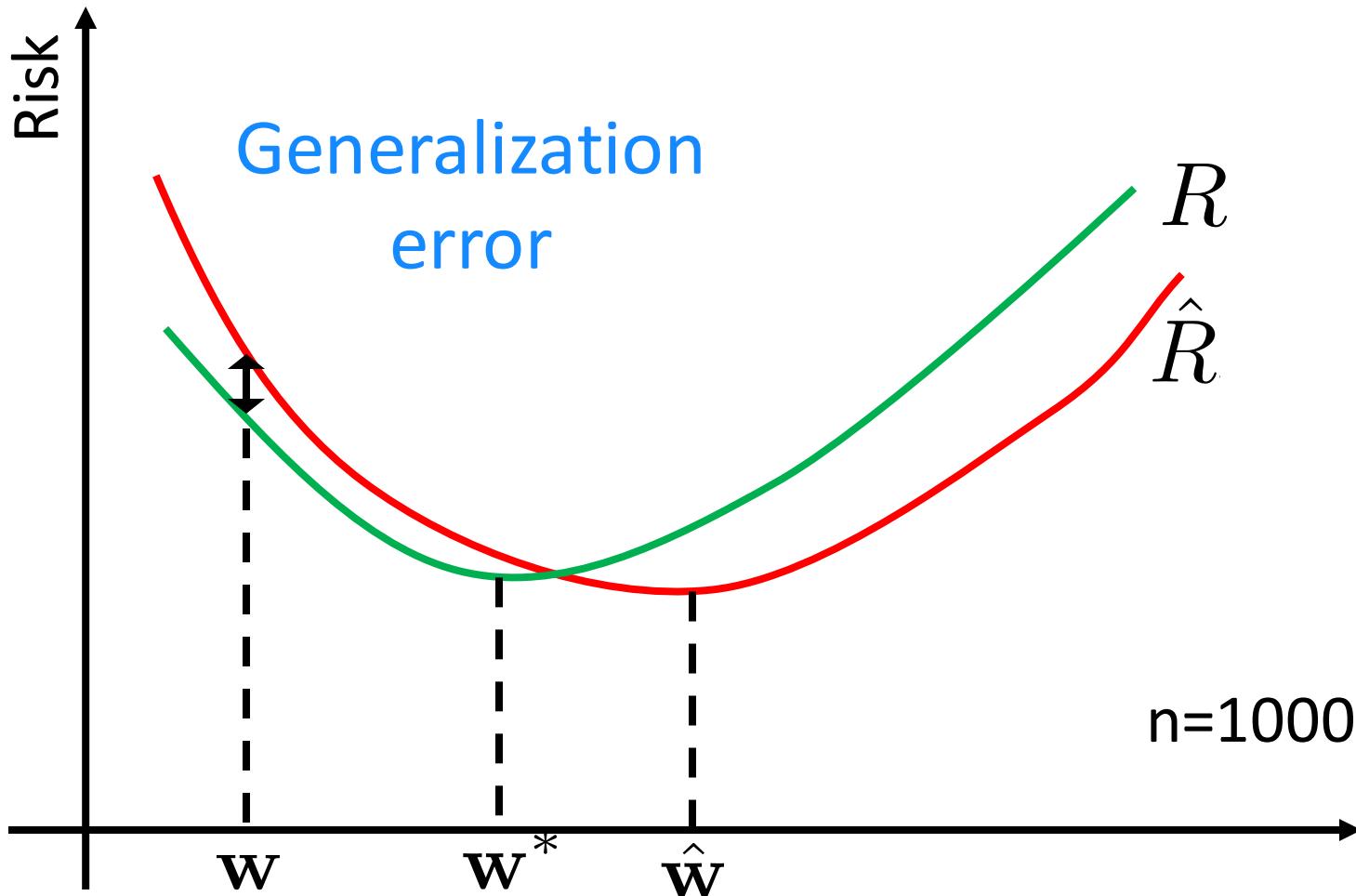
- Ideally, we wish to solve

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} R(\mathbf{w})$$

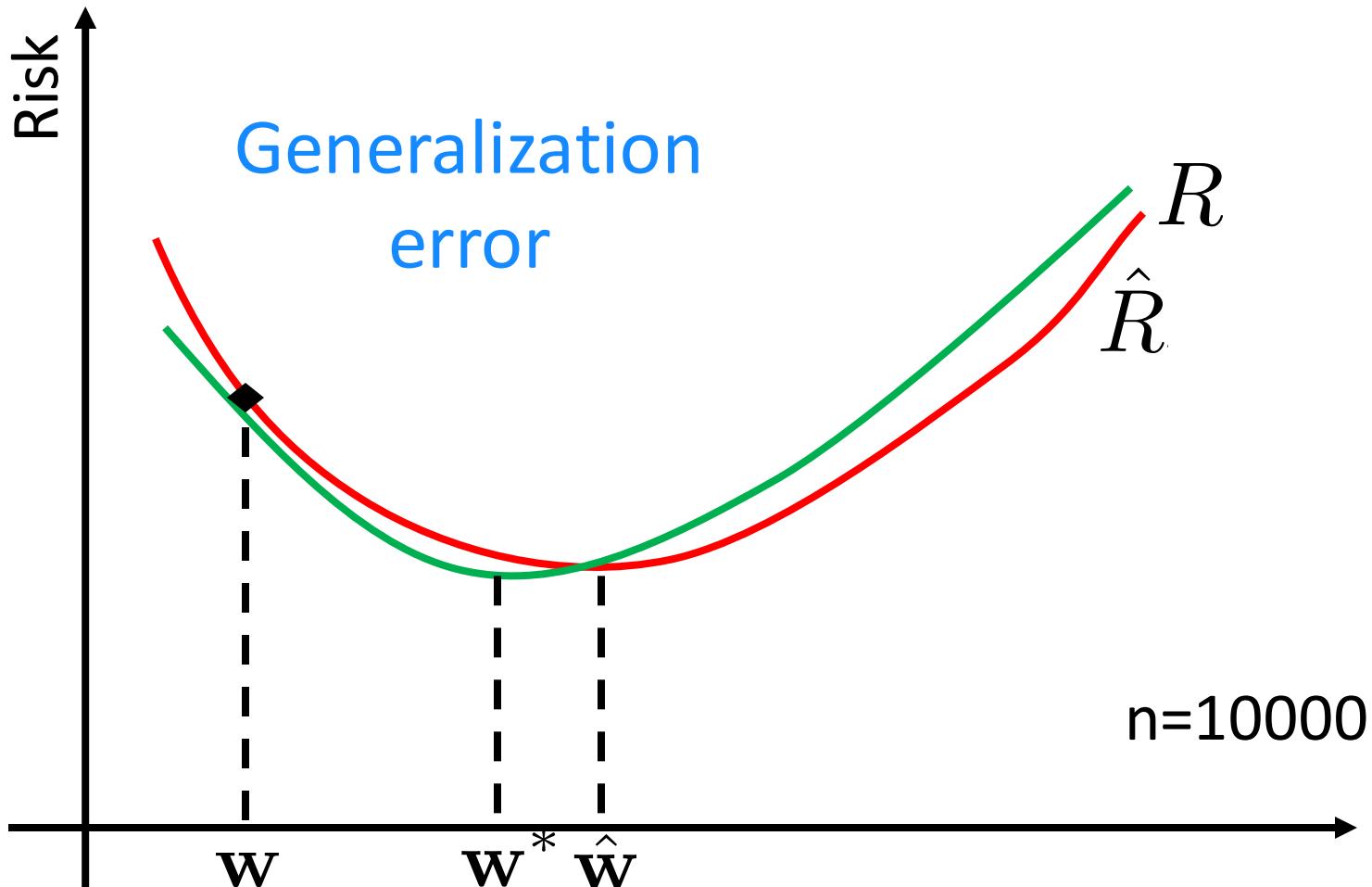
Empirical vs true risk



Empirical vs true risk



Empirical vs true risk



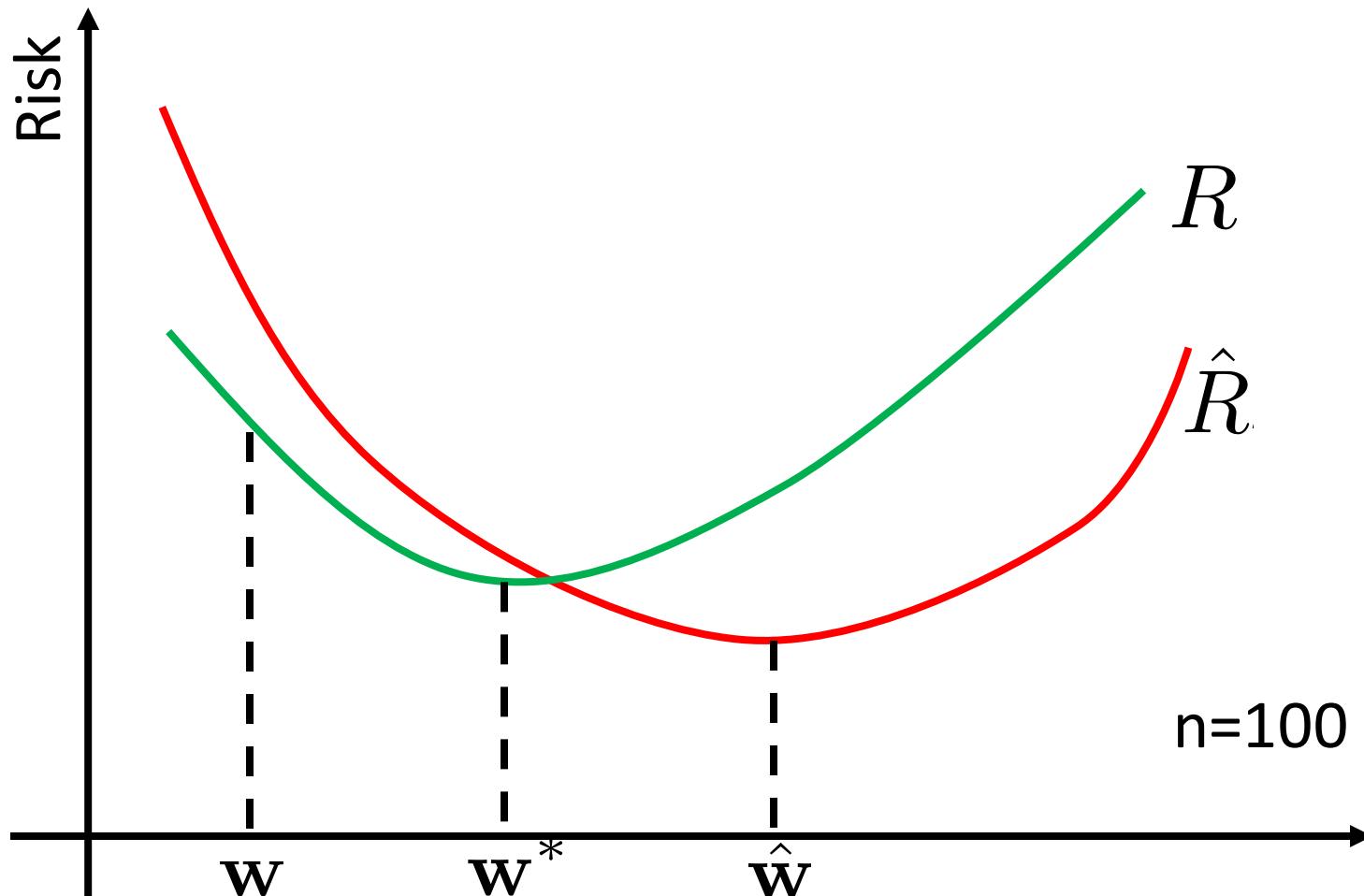
Outlook: Requirements for learning

- For learning via empirical risk minimization to be successful, need **uniform convergence**:

$$\sup_{\mathbf{w}} |R(\mathbf{w}) - \hat{R}_D(\mathbf{w})| \rightarrow 0 \text{ as } |D| \rightarrow \infty$$

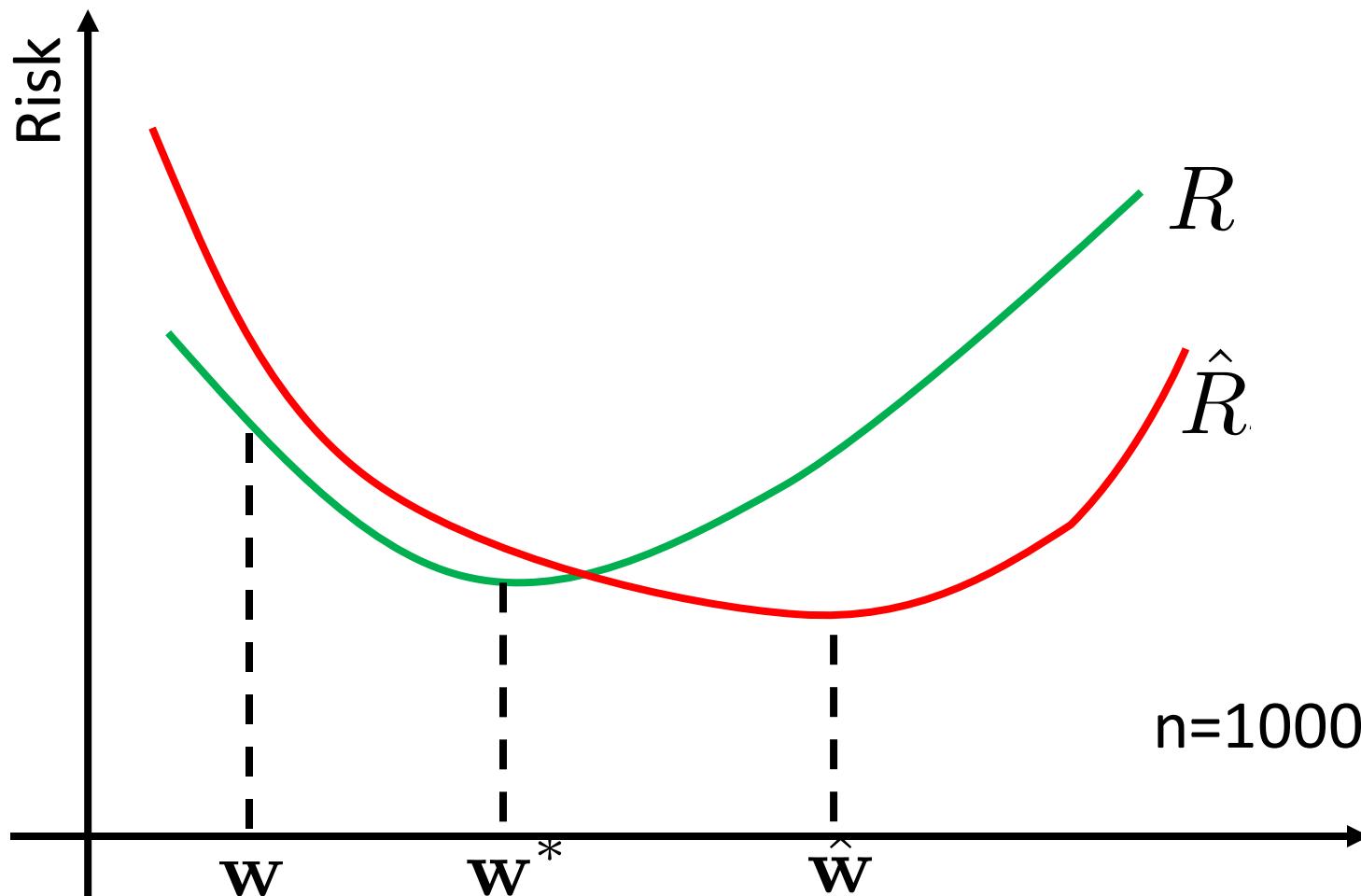
- This is not implied by law of large numbers alone, but depends on model class (holds, e.g., for squared loss on data distributions with bounded support)
→ Statistical learning theory

What can go wrong in ERM

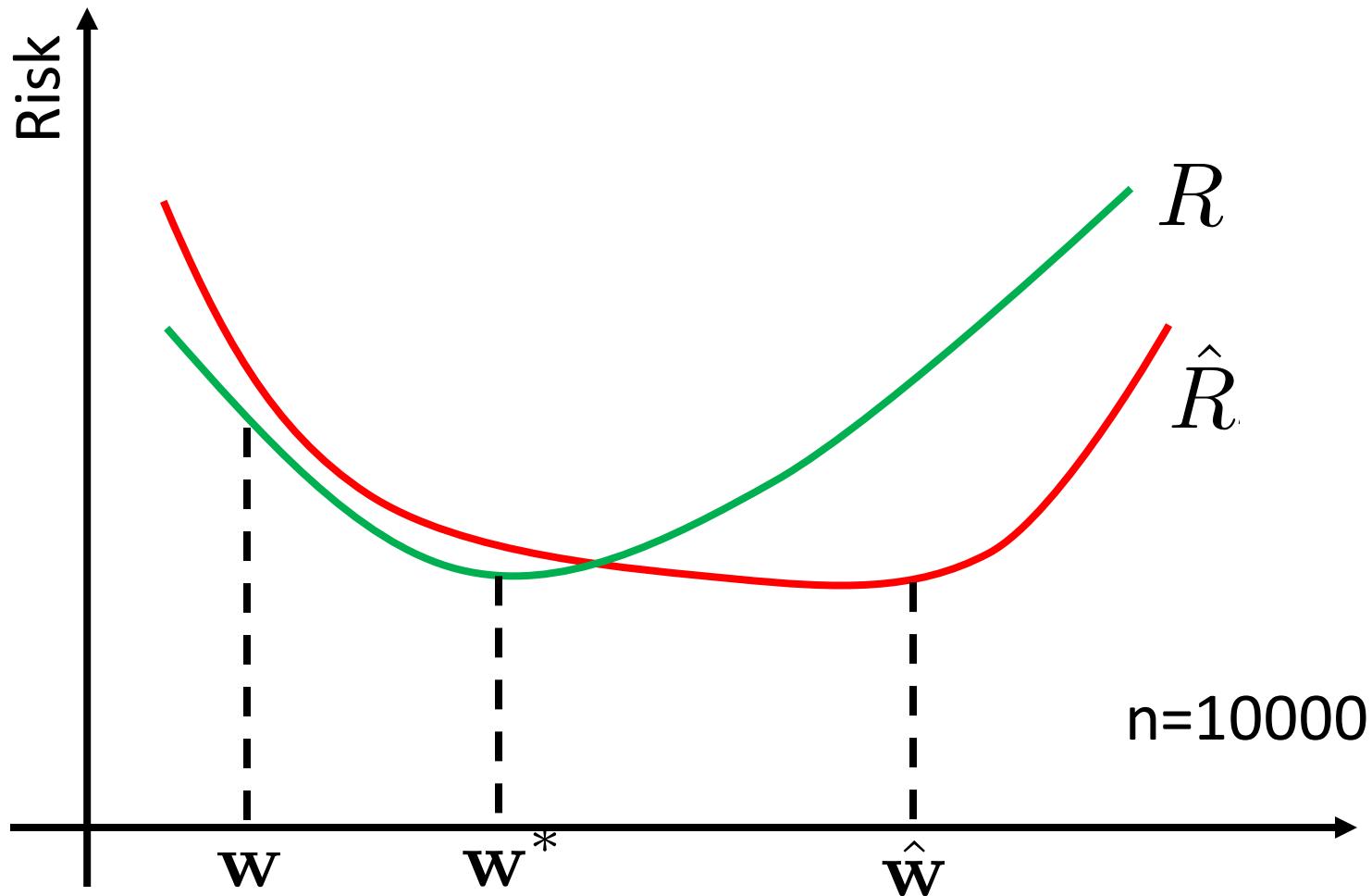


$$n = |D|$$

What can go wrong in ERM



What can go wrong in ERM



Learning from finite data

- Law of large numbers / uniform convergence are **asymptotic** statements (with $n \rightarrow \infty$)
- In practice one has **finite** amount of data.
- What can go wrong?

Simple example

$$\hat{\mathbf{w}}_D = \operatorname{argmin}_{\mathbf{w}} \hat{R}_D(\mathbf{w}) \quad \mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} R(\mathbf{w})$$

What if we evaluate performance on training data?

$$\hat{\mathbf{w}}_D = \operatorname{argmin}_{\mathbf{w}} \hat{R}_D(\mathbf{w}) \quad \mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} R(\mathbf{w})$$

- In general, it holds that $\mathbb{E}_D \left[\hat{R}_D(\hat{\mathbf{w}}_D) \right] < \mathbb{E}_D \left[R(\hat{\mathbf{w}}_D) \right]$

- **Thus, we obtain an overly optimistic estimate!**

More realistic evaluation?

- Want to avoid underestimating the prediction error
- **Idea:** Use **separate test set** from the same distribution P
- Obtain training and test data D_{train} and D_{test}
- **Optimize \mathbf{w} on training set**

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}_{train}(\mathbf{w})$$

- **Evaluate on test set**

$$\hat{R}_{test}(\hat{\mathbf{w}}) = \frac{1}{|D_{test}|} \sum_{(\mathbf{x}, y) \in D_{test}} (y - \hat{\mathbf{w}}^T \mathbf{x})^2$$

- Then: $\mathbb{E}[\hat{R}_{test}(\hat{\mathbf{w}})] = \mathbb{E}[R(\hat{\mathbf{w}})]$

Why?

Evaluating predictive performance

- Training error (empirical risk) **systematically underestimates** true risk

$$\mathbb{E}_D \left[\hat{R}_D(\hat{\mathbf{w}}_D) \right] < \mathbb{E}_D \left[R(\hat{\mathbf{w}}_D) \right]$$

- Using an **independent test set** avoids this bias

$$\mathbb{E}_{D_{train}, D_{test}} \left[\hat{R}_{D_{test}}(\hat{\mathbf{w}}_{D_{train}}) \right] = \mathbb{E}_{D_{train}} \left[R(\hat{\mathbf{w}}_{D_{train}}) \right]$$

First attempt: Evaluation for model selection

- Obtain training and test data D_{train} and D_{test}
- Fit each candidate model (e.g., degree m of polynomial)

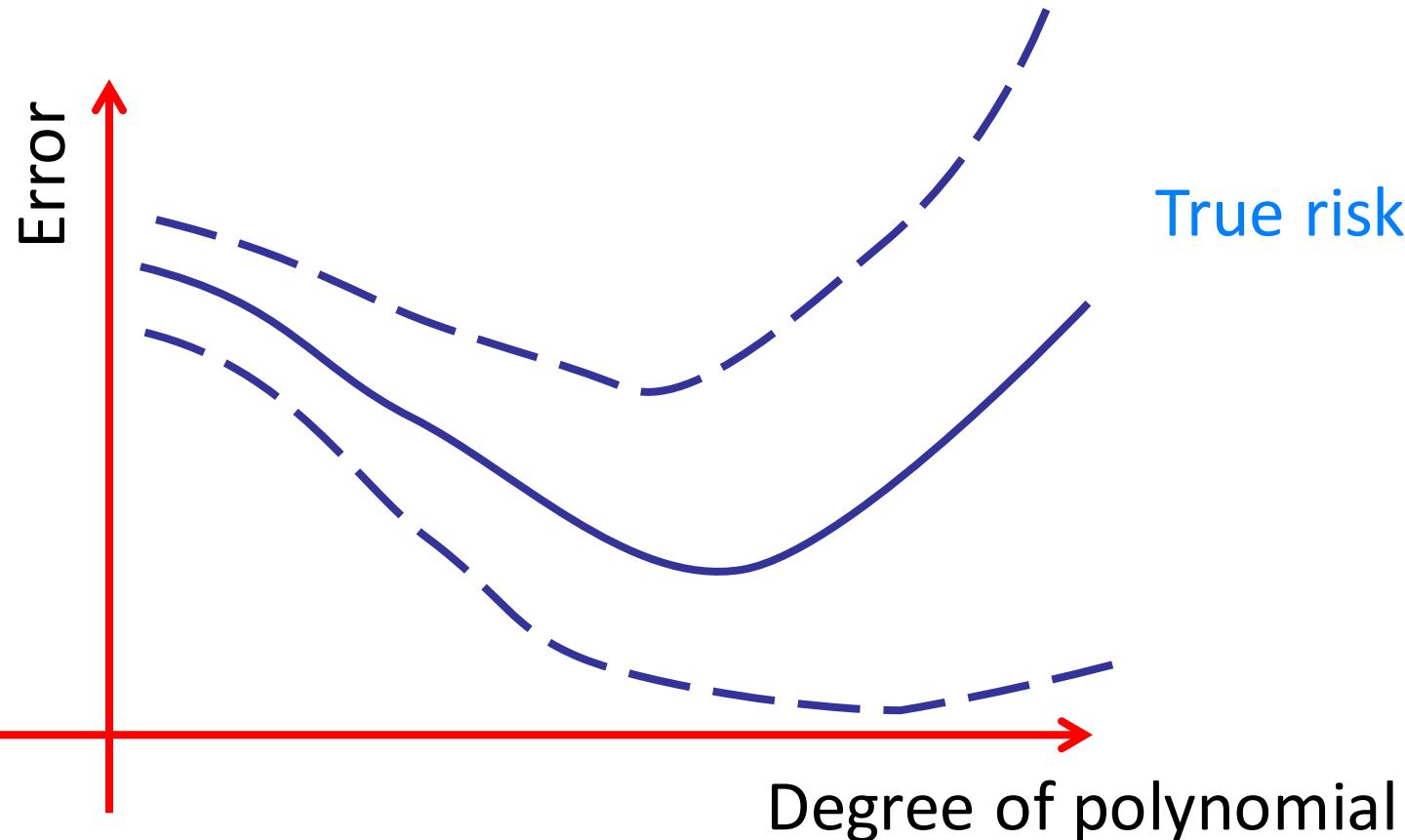
$$\hat{\mathbf{w}}_m = \operatorname{argmin}_{\mathbf{w}: \operatorname{degree}(\mathbf{w}) \leq m} \hat{R}_{\text{train}}(\mathbf{w})$$

- Pick one that does best on test set:

$$\hat{m} = \operatorname{argmin}_m \hat{R}_{\text{test}}(\hat{\mathbf{w}}_m)$$

- *Do you see a problem?*

Overfitting to *test* set



- Test error is itself random! Variance usually increases for more complex models
- Optimizing for *single* test set creates bias