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Recall: Least-squares linear regression optimization

s Given data set D = {(x1,y1), ..., (Xn,Yn)}

n

W = arg min Z(yz —wlx;)?

W
1=1

¢ Last lecture, discussed how to solve using closed form
& gradient descent



Supervised learning summary so far

Representation/ Linear hypotheses

features

Model/ Loss-function

ObjECtive: Squared loss, |, loss

Method: Exact solution, Gradient Descent
Evaluation Empirical risk = (mean) squared error

metric:



Recall: Important choices in regression

¢ What types of functions f should we consider? Examples
1 fix) M (x)

¢ How should we measure goodness of fit?



Fitting nonlinear functions

¢ How about functions like this:




Linear regression for polynomials

We can fit non-linear functions via linear regression,
using nonlinear features of our data (basis functions)

d
f(x) = Z w; P;(X)



Demo: Linear regression on polynomials



Underfitting
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Supervised learning summary so far

Representatio n/ Linear hypotheses, nonlinear hypotheses through
feature transformations

features

Model/ Loss-function

Objective: Squared loss, | -loss

Method: Exact solution, Gradient Descent
Evaluation Mean squared error

metric:



Model selection for linear regression with polynomials

Error

How can we estimate this?

Best

model Prediction

error

Training error

Degree of polynomial
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Interlude: A note on probability

¢ You'll need to know about basic concepts in
probability:
¢ Random variables
¢ Expectations (Mean, Variance etc.)
¢ Independence (i.i.d. samples from a distribution, ...)

o ...
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Example: Gaussian distribution

normpdfix0,17
T

¢ o = Standard deviation 1 exp (_ (T — éi)
o 1 =mean V2mo? 20

)
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Example: Multivariate Gaussian
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Interlude: Expectations

¢ Expected value of random variable X

¢ Expected value of some function of X

e Linearity of expectation
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Achieving generalization

¢ Fundamental assumption: Our data set is generated
independently and identically distributed (iid) from
some unknown distribution P

(Xiayi) ~ P(X,Y)

o Our goal is to minimize the expected error (true risk)
under P

Riw) = [ Plxy)(y — w'x)dxdy
— Ex,y[(y — WTX)Q]
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Side note on iid assumption

o When is iid assumption invalid?
¢ Time series data
¢ Spatially correlated data
¢ Correlated noise

‘ [N ]

¢ Often, can still use machine learning, but one has to
be careful in interpreting results.

o Most important: Choose train/test to assess the
desired generalization
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Estimating the generalization error

o Estimate the true risk by the empirical risk on a
sample data set D

¢ Why might this work?

Law of large numbers Rp(w) — R(w)
for any fixed w almost surely as |D| — oo
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What happens if we optimize on training data?

¢ Suppose we are given training data D

Empirical Risk Minimization: v, = argmin R, (W)
W

*

» Ideally, we wish to solve w* = argmin R(w)
W
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Risk

Empirical vs true risk

Generalization
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Empirical vs true risk
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Empirical vs true risk
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Outlook: Requirements for learning

¢ For learning via empirical risk minimization to be
successful, need uniform convergence:

sup |[R(w) — Rp(w)| = 0 as |D| = o

¢ This is not implied by law of large numbers alone,
but depends on model class (holds, e.g., for squared
loss on data distributions with bounded support)
=» Statistical learning theory
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What can go wrong in ERM
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What can go wrong in ERM

o
2
R
. /R
|
|
|
I I I
| | | n=1000
' ' ! .
W W W

24



What can go wrong in ERM
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Learning from finite data

o Law of large numbers / uniform convergence are
asymptotic statements (with n = <o)

¢ In practice one has finite amount of data.

¢ What can go wrong?
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Simple example

Wp = argmin Rp(w)
W

w* = argmin R(w)
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What if we evaluate performance on training data?

Wp = argmin Rp(w) w’ = argmin R(w)

¢ In general, it holds that [ [}?D(WD)} < [Ep [R(WD)]

¢ Thus, we obtain an overly optimistic estimate!
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More realistic evaluation?

¢ Want to avoid underestimating the prediction error
¢ ldea: Use separate test set from the same distribution P
¢ Obtain training and test data D;,qin and Diest

¢ Optimize w on training set

W = argmin }A%tmm(w)
W

e Evaluate on test set

. 1 X
Rtest (W) — Z (y — VVTX)2
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Why?
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Evaluating predictive performance

¢ Training error (empirica
underestimates true ris

E [RD(VAVD):

| risk) systematically
K

< Ep {R(vAvD)}

¢ Using an independent test set avoids this bias

<1JDt'Pa?lnaDtest {EDtest (WDtra/in):| — <LDtra/én |:R(WDtrain):|
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First attempt: Evaluation for model selection

¢ Obtain training and test data D,..,;,, and D, .,

¢ Fit each candidate model (e.g., degree m of polynomial)

W, = argmin = Ryiain (W)
w:degree(w)<m

¢ Pick one that does best on test set:

m = argmin fgtest(wm)
m

¢ Do you see a problem?
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Overfitting to test set

/

Error

True risk

Degree of polynomial

o Test error is itself random! Variance usually increases
for more complex models

¢ Optimizing for single test set creates bias N



