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Recall: Least-squares linear regression optimization
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o Last lecture, discussed how to solve using closed form
& gradient descent



Supervised learning summary so far

Representation/ Linear hypotheses

features

Model/ Loss-function

ObjECtive: Squared loss, |, loss

Method: Exact solution, Gradient Descent
Evaluation Empirical risk = (mean) squared error

metric:



Recall: Important choices in regression

¢ What types of functions f should we consider? Examples
1 f(x) A (x)

¢ How should we measure goodness of fit?



Fitting nonlinear functions

¢ How about functions like this:
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Linear regression for polynomials

We can fit non-linear functions via linear regression,
using nonlinear features of our data (basis functions)
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Demo: Linear regression on polynomials



10
5
0
Underfitti
-5 g
-10 1 = Ground Truth
- Degree 1
* Training Points
0 2 a 6 8 10
x
10
5
0 <4
-5 4
-10 { = Ground Truth
—— Degree 5
* Training Points
0 2 4 6 8 10
x
10
54
L] L]
o Overfitting
-5 4
-10 { = Ground Truth
- Degree 17
*  Training Points

0 2 4 6 8 10



Supervised learning summary so far

Representation/ Linear hypotheses, nonlinear hypotheses through
feature transformations

features

Model/ Loss-function
ObjECtive: Squared loss, |-loss

Method: Exact solution, Gradient Descent
Evaluation Mean squared error

metric:



Model selection for linear regression with polynomials

Error

How can we estimate this?

Best

model Prediction

error

Training error

Degree of polynomial
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Interlude: A note on probability

¢ You‘ll need to know about basic concepts in
probability:
¢ Random variables
¢ Expectations (Mean, Variance etc.)
¢ Independence (i.i.d. samples from a distribution, ...)

‘ LN
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Example: Gaussian distribution

normpdf(x,0,1)
Ll

o o = Standard deviation 1 exp (_ (z — )

¢ L =mean V2mo?
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Example: Multivariate Gaussian




Interlude: Expectations

¢ Expected value of random variable X
IF[Y] _ x Z xp(y) | Y X1 alc'scﬂ/‘(

f\{’u\a'x | X is continvovs

¢ Expected value of some function of X
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Achieving generalization

¢ Fundamental assumption: Our data set is generated
independently and identically distributed (iid) from
some unknown distribution P

(%i,yi) ~ P(X,Y)

¢ Our goal is to minimize the expected error (true risk)
under P

Riw) = [ Px.y)(y — w'x)dxdy

= Ex,y[(y — WTX)Q]
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Side note on iid assumption

¢ When is iid assumption invalid?
¢ Time series data
¢ Spatially correlated data
¢ Correlated noise

‘ LN ]

¢ Often, can still use machine learning, but one has to
be careful in interpreting results.

o Most important: Choose train/test to assess the
desired generalization
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Estimating the generalization error

¢ Estimate the true risk by the empirical risk on a
sample data set D

¢ Why might this work?

Law of large numbers Rp(w) — R(w)
for any fixed w almost surely as |D| — oo
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What happens if we optimize on training data?

¢ Suppose we are given training data D

Empirical Risk Minimization: &, = argmin Rp(w)

W

» Ideally, we wish to solve w* = argmin R(w)
W
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Risk

Empirical vs true risk

Generalization
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Empirical vs true risk
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Empirical vs true risk
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Outlook: Requirements for learning

¢ For learning via empirical risk minimization to be
successful, need uniform convergence:

sup |[R(w) — Rp(w)| = 0 as |D| — o

¢ This is not implied by law of large numbers alone,
but depends on model class (holds, e.g., for squared
loss on data distributions with bounded support)
=>» Statistical learning theory
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What can go wrong in ERM
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What can go wrong in ERM
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Risk

What can go wrong in ERM
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Learning from finite data

¢ Law of large numbers / uniform convergence are
asymptotic statements (with n = o)

¢ In practice one has finite amount of data.

¢ What can go wrong?
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Simple example

Wp = argmin Rp(w)

w* = argmin R(w)

f(v}-. wX
P= Uniform (\ ) Vel |-101] """{)
N-\on | camr= Qe o)~ P
Yy = ara\:\in QY- ‘”*lfh’ 1
ao(lﬁo)'z (- 1) =0

RCi = E[ Cr-x]=t0+ %2
Cxy)~P =2

W*==O ~ ’
Ryt Ryl =1
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What if we evaluate performance on training data?
Wp = argmin Rp(w) w" = argmin R(w)
d o W Z
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¢ Thus, we obtain an overly optimistic estimate!
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More realistic evaluation?

¢ Want to avoid underestimating the prediction error

¢ ldea: Use separate test set from the same distribution P
9 Obtain‘"#é?ﬁ*i(ng and test data Dy,qin and Diegt

¢ Optimize w on training set

w = argmin Ryyqin (W)

e Evaluate on test set
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¢ Then:
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