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Recall: Least-squares linear regression optimization
[Legendre 1805, Gauss 1809]

Given data set

Last lecture, discussed how to solve using closed form 
& gradient descent
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w⇤ = argmin
w

nX

i=1

(yi �wTxi)
2

D = {(x1, y1), . . . , (xn, yn)}
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Supervised learning summary so far
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Model/
objective: 

Loss-function
Squared loss, lp loss

Method: Exact solution, Gradient Descent

Representation/
features

Linear hypotheses

Evaluation
metric: 

Empirical risk = (mean) squared error



Recall: Important choices in regression
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What types of functions f should we consider? Examples

How should we measure goodness of fit?
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Fitting nonlinear functions
How about functions like this:
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Linear regression for polynomials
We can fit non-linear functions via linear regression, 
using nonlinear features of our data (basis functions)
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f(x) =
dX

i=1

wi�i(x)



Demo: Linear regression on polynomials
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Underfitting

Overfitting



Supervised learning summary so far
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Model/
objective: 

Loss-function
Squared loss, lp-loss

Method: Exact solution, Gradient Descent

Representation/
features

Linear hypotheses, nonlinear hypotheses through 
feature transformations

Evaluation
metric: 

Mean squared error



Model selection for linear regression with polynomials
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Degree of polynomial

Er
ro

r

Prediction
error

Training error

How can we estimate this?

Best
model



Interlude: A note on probability
You‘ll need to know about basic concepts in 
probability:

Random variables
Expectations (Mean, Variance etc.)
Independence (i.i.d. samples from a distribution, ...)
...
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Example: Gaussian distribution

s = Standard deviation
µ = mean
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Example: Multivariate Gaussian
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Interlude: Expectations
Expected value of random variable X

Expected value of some function of X

Linearity of expectation
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Achieving generalization
Fundamental assumption: Our data set is generated
independently and identically distributed (iid) from
some unknown distribution P

Our goal is to minimize the expected error (true risk)
under P
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(xi, yi) ⇠ P (X, Y )

= Ex,y[(y �wTx)2]

R(w) =

Z
P (x, y)(y �wTx)2dxdy



Side note on iid assumption
When is iid assumption invalid?

Time series data
Spatially correlated data
Correlated noise
…

Often, can still use machine learning, but one has to 
be careful in interpreting results.
Most important: Choose train/test to assess the 
desired generalization 
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Estimating the generalization error
Estimate the true risk by the empirical risk on a 
sample data set D

Why might this work?

Law of large numbers
for any fixed w almost surely as
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|D| ! 1

R̂D(w) =
1

|D|
X

(x,y)2D

(y �wTx)2

R̂D(w) ! R(w)



What happens if we optimize on training data?
Suppose we are given training data

Empirical Risk Minimization:

Ideally, we wish to solve
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w⇤ = argmin
w

R(w)

D

ŵD = argmin
w

R̂D(w)



Empirical vs true risk
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R

R̂n

Ri
sk

Generalization
error

w ŵw⇤

n=100



Empirical vs true risk
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R

R̂n

Ri
sk

Generalization
error

w ŵw⇤

n=1000



Empirical vs true risk
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R

R̂n

Ri
sk

Generalization
error

w ŵw⇤

n=10000



Outlook: Requirements for learning
For learning via empirical risk minimization to be 
successful, need uniform convergence:

This is not implied by law of large numbers alone, 
but depends on model class (holds, e.g., for squared 
loss on data distributions with bounded support)
è Statistical learning theory
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sup
w

|R(w)� R̂D(w)| ! 0 as |D| ! 1



What can go wrong in ERM
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R

R̂n

Ri
sk

w ŵw⇤

n=100

n = |D|



What can go wrong in ERM

24

R

R̂n

Ri
sk

w ŵw⇤
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What can go wrong in ERM
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R

R̂n

Ri
sk

w ŵw⇤

n=10000



Learning from finite data
Law of large numbers / uniform convergence are 
asymptotic statements (with nà ∞)
In practice one has finite amount of data.

What can go wrong?
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Simple example
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w⇤ = argmin
w

R(w)ŵD = argmin
w

R̂D(w)



What if we evaluate performance on training data?

In general, it holds that

Thus, we obtain an overly optimistic estimate!
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w⇤ = argmin
w

R(w)ŵD = argmin
w

R̂D(w)

ED

h
R̂D(ŵD)

i
< ED

h
R(ŵD)

i



More realistic evaluation?
Want to avoid underestimating the prediction error
Idea: Use separate test set from the same distribution P
Obtain training and test data and
Optimize w on training set

Evaluate on test set

Then: 
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Dtrain Dtest

ŵ = argmin
w

R̂train(w)

R̂test(ŵ) =
1

|Dtest|
X

(x,y)2Dtest

(y � ŵTx)2

EDtrain,Dtest

h
R̂Dtest(ŵDtrain)

i
= EDtrain

h
R(ŵDtrain)

i


