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Recap: Achieving generalization
Fundamental assumption: Our data set is generated
independently and identically distributed (iid) from
some unknown distribution P

Our goal is to minimize the expected error (true risk)
under P
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(xi, yi) ⇠ P (X, Y )

= Ex,y[(y �wTx)2]

R(w) =

Z
P (x, y)(y �wTx)2dxdy



Recap: Evaluating predictive 
performance

Training error (empirical risk) systematically 
underestimates true risk
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Recap:More realistic evaluation?
Want to avoid underestimating the prediction error
Idea: Use separate test set from the same distribution P
Obtain training and test data and
Optimize w on training set

Evaluate on test set

Then: 
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1

|Dtest|
X

(x,y)2Dtest

(y � ŵTx)2
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Why?
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Recap: Evaluating predictive 
performance

Training error (empirical risk) systematically 
underestimates true risk

Using an independent test set avoids this bias
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First attempt: Evaluation for model selection
Obtain training and test data and
Fit each candidate model (e.g., degree m of polynomial)

Pick one that does best on test set:

Do you see a problem?
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Dtrain Dtest
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Overfitting to test set

Test error is itself random! Variance usually increases
for more complex models
Optimizing for single test set creates bias
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Solution: Pick multiple test sets!
Key idea: Instead of using a single test set, use
multiple test sets and average to decrease variance!
Dilemma: 
Any data I use for testing I can‘t use for training

è Using multiple independent test sets is expensive
and wasteful
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Evaluation for model selection
For each candidate model m (e.g., polynomial degree)
repeat the following procedure for i = 1:k

Split the same data set into training and validation set

Train model
Estimate error

Select model:

10

ŵi = argmin
w

R̂(i)
train(w)

D = D(i)
train ]D(i)

val

m̂ = argmin
m

1

k

kX

i=1

R̂(i)
m

R̂(i)
m = R̂(i)

val(ŵi)



How should we do the splitting?
Randomly (Monte Carlo cross-validation)

Pick training set of given size uniformly at random
Validate on remaining points
Estimate prediction error by averaging the validation error
over multiple random trials

k-fold cross-validation (è default choice)
Partition the data into k „folds“
Train on (k-1) folds, evaluating on remaining fold
Estimate prediction error by averaging the validation error
obtained while varying the validation fold
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k-fold cross-validation
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Accuracy of cross-validation
Cross-validation error estimate is very nearly
unbiased for large enough k
Show demo
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Cross-validation
How large should we pick k?
Too small
è Risk of overfitting to test set
è Using too little data for training
è risk of underfitting to training set

Too large 
In general, better performance! k=n is perfectly fine
(called leave-one-out cross-validation, LOOCV)
Higher computational complexity

In practice, k=5 or k=10 is often used and works well
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Best practice for evaluating supervised learning
Split data set into training and test set
Never look at test set when fitting the model. 
For example, use k-fold cross-validation on training set
Report final accuracy on test set
(but never optimize on test set)!

Caveat: This only works if the data is i.i.d.
Be careful, for example, if there are temporal trends or
other dependencies

15



Supervised learning summary so far
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Model/
objective: 

Loss-function
Squared loss, lp-loss

Method: Exact solution, Gradient Descent

Model selection: K-fold Cross-Validation, Monte Carlo CV

Representation/
features

Linear hypotheses, nonlinear hypotheses through 
feature transformations

Evaluation
metric: 

Mean squared error



Model selection more generally
For polynomial regression, model complexity is
naturally controlled by the degree
In general, there may not be an ordering of the
features that aligns with complexity

E.g., how should we order words in the bag-of-words model?
Collection of nonlinear feature transformations

Now model complexity is no longer naturally „ordered“
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Demo: Overfitting à Large Weights
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Regularization
If we only seek to minimize our loss (optimize data fit)
can get very complex models (large weights)

Solution?

Regularization! 
Encourage small weights via penalty functions
(regularizers)
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Ridge regression
Regularized optimization problem:

Can optimize using gradient descent, or
still find analytical solution:

Note that now the scale of x matters!
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Renormalizing data: Standardization
Ensure that each feature has zero mean and unit
variance

Hereby is the value of the j-th feature of the i-th
data point
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Gradient descent for ridge
regression
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Demo: Regularization
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How to choose regularization parameter?

Cross-validation!
Typically pick λ logarithmically spaced:
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Regularization path
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Outlook: Fundamental tradeoff in ML
Need to trade loss (goodness of fit) and simplicity
A lot of supervised learning problems can be written
in this way:

Can control complexity by varying
regularization parameter
Many other types of regularizers exist and are very
useful (more later in this class)
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Supervised learning summary so far
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Model/
objective: 

Loss-function
Squared loss, lp-loss

Method: Exact solution, Gradient Descent

Model selection: K-fold Cross-Validation, Monte Carlo CV

Representation/
features

Linear hypotheses, nonlinear hypotheses through 
feature transformations

Evaluation
metric: 

Mean squared error

+ Regularization
L2 norm



What you need to know
Linear regression as model and optimization problem

How do you solve it?
Closed form vs gradient descent
Can represent non-linear functions using basis functions

Model validation
Resampling; Cross-validation

Model selection for regression
Comparing different models via cross-validation

Regularization
Adding penalty function to control magnitude of weights
Choose regularization parameter via cross-validation
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