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Recap: Achieving generalization

¢ Fundamental assumption: Our data set is generated
independently and identically distributed (iid) from
some unknown distribution P

(Xiayi) ~ P(X,Y)

¢ Our goal is to minimize the expected error (true risk)
under P

Riw) = [ Px.y)(y — w'x)dxdy

= Ex,y[(y — WTX)Q]



Recap: Evaluating predictive
performance

¢ Training error (empirical risk) systematically
underestimates true risk

E, {RD(VAVD): <Ep [R(VAVD)}




Recap:More realistic evaluation?

¢ Want to avoid underestimating the prediction error

¢ ldea: Use separate test set from the same distribution P
9 Obtain‘"#é?ﬁ*i(ng and test data Dy,qin and Diegt

¢ Optimize w on training set

w = argmin Ryyqin (W)
Drein W

e Evaluate on test set
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Recap: Evaluating predictive
performance

¢ Training error (empirical risk) systematically

underestimates true ris

K

E, [RD(VAVD):

< Ep {R(WD)}

¢ Using an independent test set avoids this bias

EDtrainaDtest |:RDtest (WDtrain):| — EDtra/Ln |:R(WDt7°ain):|



First attempt: Evaluation for model selection

¢ Obtain training and test data D,,.,;,, and D, .,
¢ Fit each candidate model (e.g., degree m of polynomial)

A

Wy, = argmin = Ripain (W)
w:degree(w)<m

¢ Pick one that does best on test set:

@ argmin f%test (Wm)
m

¢ Do you see a problem?



Overfitting to test set

Error

Degree of polynomial

o Test error is itself random! Variance usually increases
for more complex models

¢ Optimizing for single test set creates bias



Solution: Pick multiple test sets!
¢ Key idea: Instead of using a single test set, use
multiple test sets and average to decrease variance!

¢ Dilemma:
Any data | use for testing | can‘t use for training

=» Using multiple independent test sets is expensive
and wasteful



Fvaluation for model selection

¢ For each candidate model m (e.g., polynomial degree)
repeat the following procedure for i = 1:k
¢ Split the same data set into training and validation set

D = D(Z) D(’L)

traln val

A (1)
e Train model Wi o arg mln Ry ain (W)

e Estimate error i i
) - )
¢ Select model: B argmm 4 Z R(Z

1=1
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How should we do the splitting?

e Randomly (Monte Carlo cross-validation)
¢ Pick training set of given size uniformly at random
¢ Validate on remaining points

¢ Estimate prediction error by averaging the validation error
over multiple random trials

e k-fold cross-validation (=» default choice)
¢ Partition the data into k ,,folds”
¢ Train on (k-1) folds, evaluating on remaining fold

¢ Estimate prediction error by averaging the validation error
obtained while varying the validation fold

11



k-fold cross-validation
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Accuracy of cross-validation

o Cross-validation error estimate is very nearly
unbiased for large enough k

¢ Show demo
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Cross-validation

¢ How large should we pick k?

¢ Too small
=>» Risk of overfitting to test set

=» Using too little data for training
=>» risk of underfitting to training set

o Too large

¢ In general, better performance! k=n is perfectly fine
(called leave-one-out cross-validation, LOOCV)

¢ Higher computational complexity

¢ In practice, k=5 or k=10 is often used and works well
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Best practice for evaluating supervised learning

¢ Split data set into training and test set

o Never look at test set when fitting the model.
For example, use k-fold cross-validation on training set

o Report final accuracy on test set
(but never optimize on test set)!

¢ Caveat: This only works if the data is i.i.d.

¢ Be careful, for example, if there are temporal trends or
other dependencies
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Supervised learning summary so far

Representation/ Linear hypotheses, nonlinear hypotheses through
feature transformations

features

Model/ Loss-function
ObjECtive: Squared loss, |-loss

Method: Exact solution, Gradient Descent
Evaluation Mean squared error

metric:

Model selection: K-fold Cross-Validation, Monte Carlo CV
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Model selection more generally

o For polynomial regression, model complexity is
naturally controlled by the degree

¢ In general, there may not be an ordering of the
features that aligns with complexity
¢ E.g., how should we order words in the bag-of-words model?

e Collection of nonlinear feature transformations

x — log(x + ¢)

_ 1 '
T xoz Qs(Y\ = [XMX'! /\J-K’-L p SIn ()(3)/@(}0(@

x — sin(ax + b)

o Now model complexity is no longer naturally ,,ordered”
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Demo: Overfitting = Large Weights



Regularization

¢ If we only seek to minimize our loss (optimize data fit)
can get very complex models (large weights)

¢ Solution?

e Regularization!
Encourage small weights via penalty functions
(regularizers)
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Ridge regression

» Regularized optimization problem: PN
1o
min — 3 (y; —w'x;)? +A\|w\|%
i=1

¢ Can optimize using gradient descent, or
still find analytical solution:

W= (XTX +AI)” 1XTy
T Je ™

¢ Note that now the scale of x mattersI
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Renormalizing data: Standardization

¢ Ensure that each feature has zero mean and unit

variance

Lij =

(T35 — f45)/0;

o Hereby z; ; is the value of the j-th feature of the i-th

data point

n

1 1
= Zfﬂw ;= - > (i — fij)°

1=1
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—

Gradient descent for ridge
regression

Ve (':T 7 Chow )+ Nl > = 9, R@) +29% 7
\_':4_\{_/—‘_/ Z,W .
L« Cwle=w'w)
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Demo: Regularization
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How to choose regularization parameter?

n

1
min = > (y; = wxi)? + Allwl
i=1
¢ Cross-validation!
o Typically pick A logarithmically spaced:

€ 5 5 6
o , (o , - -v/rfO,/IO
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Regularization path

Ridge coefficients as a function of the regularization
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Outlook: Fundamental tradeoff in ML

¢ Need to trade loss (goodness of fit) and simplicity

o A lot of supervised learning problems can be written
in this way:

min R(w) + A\C(w)

W

o Can control complexity by varying
regularization parameter )\

¢ Many other types of regularizers exist and are very
useful (more later in this class)
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Supervised learning summary so far

Representation/ Linear hypotheses, nonlinear hypotheses through
feature transformations

features

Model/ Loss-function  + Regularization
objective: Squared loss, |,-loss L2 norm
Method: Exact solution, Gradient Descent

Evaluation Mean squared error

metric:

Model selection: «k-fold Cross-Validation, Monte Carlo CV
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What you need to know

¢ Linear regression as model and optimization problem
¢ How do you solve it?
¢ Closed form vs gradient descent
¢ Can represent non-linear functions using basis functions
¢ Model validation
¢ Resampling; Cross-validation
¢ Model selection for regression
¢ Comparing different models via cross-validation
e Regularization

¢ Adding penalty function to control magnitude of weights
¢ Choose regularization parameter via cross-validation
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