
Introduction to
Machine Learning

Linear Classification

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

http://las.ethz.ch

Classification
Instance of supervised learning where Y is discrete
(categorical)
Want to assign data points X

Documents
Queries
Images
User visits
…

a label Y (spam/not-spam; topic such as sports, politics,
entertainment, click/no-click etc.)

For now, focus on binary classification
2

3

Illustration of binary classification

Input: Labeled data set (e.g., rep. bag-of-words) with
positive (+) and negative (-) examples
Output: Decision rule (hypothesis)

+

–
+
++
+

+

–
– –
–

–

–

–
Spam

Not-spam

+
–

Linear classifiers
Data set

4

+

–
+
++

+

+

–
– –

–
–

–

–+
–

D = {(x1, y1), . . . , (xn, yn)}

Why linear classification?
Linear classification seems restrictive

Especially in high-dimensional settings / when using the
right features, often works quite well!
Prediction is typically very efficient

5

Finding linear separators
Want to write the search for a classifier as
optimization problem
What should we optimize?
First Idea: Seek w that minimizes #mistakes

6

Optimization problem
Goal:

Challenge: in contrast to squared loss, 0/1 loss is
not convex (not even differentiable!)

7

ŵ = argmin
w

1

n

nX

i=1

[yi 6= sign(wTxi)]

= argmin
w

1

n

nX

i=1

`0/1(w;xi, yi)

A surrogate loss function

8

Key concept: Surrogate losses
Replace intractable cost function that we care about
(e.g., 0/1-loss) by tractable loss function
(e.g., Perceptron loss) for sake of optimization /
model fitting
When evaluating a model (e.g., via cross-validation),
use original cost / performance function

9

Surrogate optimization problem
Instead of

Solve

where
is the Perceptron loss

10

`P (w; yi,xi) = max(0,�yiw
Txi)

ŵ = argmin
w

1

n

nX

i=1

`0/1(w;xi, yi)

ŵ = argmin
w

1

n

nX

i=1

`P (w;xi, yi)

Gradient descent
Compute gradient of the Perceptron loss function

11

Stochastic gradient decent
Computing the gradient requires summing over all data
For large data sets, this is inefficient
Moreover, our initial estimates are likely very wrong, and
we can get a good (unbiased) gradient estimate by
evaluating the gradient on few points

Extreme case: Evaluate on only one randomly chosen point!

è Stochastic gradient descent

12

Stochastic Gradient Descent
Start at an arbitrary
For t=1,2,... do

Pick data point from training set
uniformly at random (with replacement), and set

Hereby, is called learning rate
Guaranteed to converge under mild conditions, if

and

13

w0 2 Rd

⌘t

wt+1 = wt � ⌘tr`(wt;x
0, y0)

(x0, y0) 2 D

X

t

⌘t = 1
X

t

⌘2t < 1

The Perceptron algorithm
Is just stochastic gradient descent (SGD) on the
Perceptron loss function with learning rate 1

Theorem: If the data is linearly separable, the
Perceptron will obtain a linear separator

14

`P

Perceptron Demo

15

Mini-batch SGD
Using single points might have large variance in the
gradient estimate, and hence lead to slow
convergence.
Can reduce variance by averaging over the gradients
w.r.t. multiple randomly selected points
(mini-batches)

16

Demo: SGD for regression

17

Adaptive learning rates
Similar as in gradient descent, the learning rate is very
important
There exist various approaches for adaptively tuning
the learning rate. Often times, these even use a
different learning rate per feature
Examples: AdaGrad, RMSProp, Adam, …

18

Supervised learning summary so far

19

Model/
objective:

Loss-function + Regularization
Squared loss, 0/1 loss,
Perceptron loss

L2 norm

Method: Exact solution, Gradient Descent, (mini-batch) SGD

Model selection: K-fold Cross-Validation, Monte Carlo CV

Representation/
features

Linear hypotheses; nonlinear hypotheses with
nonlinear feature transforms

Evaluation
metric:

Mean squared error, Accuracy

Which of these separators will the
Perceptron “prefer”?

20

+

–
+

++

+

+

–

–
–

–

–

–

–+
–

Support Vector Machines (SVMs):
“max. margin” linear classification

21

+

–
+

++

+

+

–

–
–

–

–

–

–+
–

Hinge vs. Perceptron loss

22

0/1 loss

Perceptron loss

Hinge loss
(SVM)

0 1

1

ywTx

Hinge loss upper bounds #mistakes; encourages „margin“

`H(w;x, y) = max{0, 1� ywTx}

SVM vs. Perceptron
Perceptron:

Support vector machine (SVM):

23

ŵ = argmin
w

1

n

nX

i=1

max{0,�yiw
Txi}

ŵ = argmin
w

1

n

nX

i=1

max{0, 1� yiw
Txi}+�||w||22

Support Vector Machines (SVMs):
“max. margin” linear classification

24

+

–
+

++

+

+

–

–
–

–

–

–

–+
–

Support vector machines
Widely used, very effective linear classifer
Almost like Perceptron. Only differences:

Optimize slightly different, shifted loss (hinge loss)
Regularize weights (like ridge regression)

Can optimize via stochastic gradient descent

Safe choice for learning rate:

More details in Advanced Machine Learning lecture

25

⌘t =
1

�t

