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Classification

¢ Instance of supervised learning where Y is discrete
(categorical)

¢ Want to assign data points X
¢ Documents
¢ Queries
¢ Images
o User visits
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a label Y (spam/not-spam; topic such as sports, politics,
entertainment, click/no-click etc.)

For now, focus on binary classification



lllustration of binary classification
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¢ Input: Labeled data set (e.g., rep. bag-of-words) with
positive (+) and negative (-) examples

o Output: Decision rule (hypothesis)



Linear classifiers

o Dataset D ={(x1,y1),...,(Xn,yn)}  WeR
Ty 0
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Why linear classification?

¢ Linear classification seems restrictive

¢ Especially in high-dimensional settings / when using the
right features, often works quite well!

¢ Prediction is typically very efficient



Finding linear separators

¢ Want to write the search for a classifier as

optimization problem 3« E(’( 9) - (4 MJ
¢ What should we optimize? el o, eé :,_ﬁ

¢ First Idea: Seek w that minimizes #mistakes
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Optimization problem

¢ Goal: |
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W = argmin - ;[Zy@ # sign(w” x;)]
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arg min — ;:1 0/1(W3 X4, Y;)

» Challenge: in contrast to squared loss, 0/1 loss is
not convex (not even differentiable!)



A surrogate loss function
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Key concept: Surrogate losses

o Replace intractable cost function that we care about
(e.g., 0/1-loss) by tractable loss function
(e.g., Perceptron loss) for sake of optimization /
model fitting

¢ When evaluating a model (e.g., via cross-validation),
use original cost / performance funct|on




Surrogate optimization problem

¢ Instead of 1 —
W — arg min — Co/1(W;X;,y;
g W ; 0/1( Yi)
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is the Perceptron loss
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Gradient descent

o Compute gradient of the Perceptron loss function
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Stochastic gradient decent

o Computing the gradient requires summing over all data
e For large data sets, this is inefficient

¢ Moreover, our initial estimates are likely very wrong, and
we can get a good (unbiased) gradient estimate by
evaluating the gradient on few points

o Extreme case: Evaluate on only one randomly chosen point!

=» Stochastic gradient descent
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Stochastic Gradient Descent

o Start at an arbitrary w, ¢ R¢

¢ Fort=1,2,... do

» Pick data point (X', 3') € D from training set
uniformly at random (with replacement), and set

Wip1 = Wg — ntvg(wﬁ X/, y')

o Hereby, 1. is called learning rate
o Guaranteed to converge under mild conditions, if
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The Perceptron algorithm

o Is just stochastic gradient descent (SGD) on the
Perceptron loss function £p with learning rate 1

o Theorem: If the data is linearly separable, the
Perceptron will obtain a linear separator
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Perceptron Demo

15



Mini-batch SGD

¢ Using single points might have large variance in the
gradient estimate, and hence lead to slow
convergence.

o Can reduce variance by averaging over the gradients
w.r.t. multiple randomly selected points
(mini-batches)
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Demo: SGD for regression



Adaptive learning rates

¢ Similar as in gradient descent, the learning rate is very
Important

o There exist various approaches for adaptively tuning
the learning rate. Often times, these even use a
different learning rate per feature

o Examples: AdaGrad, RMSProp, Adam, ...
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Supervised learning summary so far

Representation/ Linear hypotheses; nonlinear hypotheses with
nonlinear feature transforms

features

Model/ Loss-function  +  Regularization

objective: Squared loss, 0/1 loss, L2 norm
Perceptron loss

Method: Exact solution, Gradient Descent, (mini-batch) SGD

Evaluation Mean squared error, Accuracy

metric:

Model selection: o4 Cross-Validation, Monte Carlo CV
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Which of these separators will the
Perceptron “prefer”?
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Support Vector Machines (SVMs):
“max. margin” linear classification
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Hinge vs. Perceptron loss

A

Perceptron lo

Hinge loss
(SVM)
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Hinge loss upper bounds #mistakes; encourages ,,margin“

O (wix,y) = max{0(D- yw’x}
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SVM vs. Perceptron

¢ Perceptron:

n
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e Support vector machine (SVM):
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Support Vector Machines (SVMs):

“max. margin” linear classification
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Support vector machines

o Widely used, very effective linear classifer

o Almost like Perceptron. Only differences:
¢ Optimize slightly different, shifted loss (hinge loss)
¢ Regularize weights (like ridge regression)

o Can optimize via stochastic gradient descent
1
» Safe choice for learning rate: "t = Nt

o More details in Advanced Machine Learning lecture
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