
Introduction to
Machine Learning

Linear Classification

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

http://las.ethz.ch

Linear classifiers
Data set

2

+

–
+
++

+

+

–
– –

–
–

–

–+
–

D = {(x1, y1), . . . , (xn, yn)}

Which of these separators will the
Perceptron “prefer”?

3

+

–
+

++

+

+

–

–
–

–

–

–

–+
–

Support Vector Machines (SVMs):
“max. margin” linear classification

4

+

–
+

++

+

+

–

–
–

–

–

–

–+
–

Hinge vs. Perceptron loss

5

0/1 loss

Perceptron loss

Hinge loss
(SVM)

0 1

1

ywTx

Hinge loss upper bounds #mistakes; encourages „margin“

`H(w;x, y) = max{0, 1� ywTx}

SVM vs. Perceptron
Perceptron:

Support vector machine (SVM):

6

ŵ = argmin
w

1

n

nX

i=1

max{0,�yiw
Txi}

ŵ = argmin
w

1

n

nX

i=1

max{0, 1� yiw
Txi}+�||w||22

Stochastic Gradient Descent
Start at an arbitrary
For t=1,2,... do

Pick data point from training set
uniformly at random (with replacement), and set

Hereby, is called learning rate
Guaranteed to converge under mild conditions, if

and

7

w0 2 Rd

⌘t

wt+1 = wt � ⌘tr`(wt;x
0, y0)

(x0, y0) 2 D

X

t

⌘t = 1
X

t

⌘2t < 1

Support vector machines
Widely used, very effective linear classifer
Almost like Perceptron. Only differences:

Optimize slightly different, shifted loss (hinge loss)
Regularize weights (like ridge regression)

Can optimize via stochastic gradient descent

Safe choice for learning rate:

More details in Advanced Machine Learning lecture

8

⌘t =
1

�t

SGD for SVM

9

Demo: Monitoring SGD

10

Choosing the regularization parameter
Can pick regularization parameter via cross-validation
just like in linear regression!
Note that instead of using the hinge-loss for
validation, would use the target performance metric
(e.g., accuracy)

11

Preview: non-linear classification

How can we find nonlinear classification boundaries?
Similar as in regression, can use non-linear
transformations of the inputs as feature vectors

12

Recall: linear regression for polynomials
We can fit non-linear classifiers via linear methods,
using nonlinear features of our data (basis functions)

For example: polynomials (in 1-D)

Higher dimensions -> Monomials
13

f(x) =
dX

i=1

wi�i(x)

f(x) =
mX

i=0

wix
i

Example

14

SVM in Scikit-Learn

15

Demo: Non-linear Classification with SVM

16

17

What you need to know
The Perceptron is an algorithm for linear classification

It applies Stochastic Gradient Descent (SGD) on the
Perceptron loss

Mini-batches exploit parallelism, reduce variance

The Perceptron loss is a convex surrogate function for
the 0-1 (misclassification) loss

It is guaranteed to produce a feasible solution
(a linear separator) if the data is separable

SGD is much more generally applicable

Support Vector Machines (SVMs) are closely related
to Perceptron; use hinge loss and regularization

18

19

Supervised learning big picture so far

Least squares
Regression

Perceptron

Ridge
Regression

Linear
SVM

l2-regularizer

l2-regularizer

Loss funct.

Loss funct.

Loss funct.

Supervised learning summary so far

20

Model/
objective:

Loss-function + Regularization
Squared loss, 0/1 loss,
Perceptron loss, Hinge
loss

L2 norm

Method: Exact solution, Gradient Descent, (mini-batch) SGD,
Convex Programming, …

Model selection: K-fold Cross-Validation, Monte Carlo CV

Representation/
features

Linear hypotheses; nonlinear hypotheses with
nonlinear feature transforms

Evaluation
metric:

Mean squared error, Accuracy

Introduction to
Machine Learning

Feature selection

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

http://las.ethz.ch/

Feature selection

In many high-dimensional problems, we may prefer

not to work with all potentially available features

Why?

Interpretability (would like to “understand” the classifier,

identify important variables/features)

Generalization (simpler models may generalize better)

Storage / computation / cost (don’t need to store / sum /

acquire data for unused features…)

How?

Naïve: try all subsets, and pick best (via crossvalidation)

22

Demo: Feature selection for regression

23

Greedy feature selection
General purpose approach:
Greedily add (or remove) features to maximize

Cross-validated prediction accuracy
Mutual information or other notions of informativeness
(not discussed)

Can be used for any method
(not only linear regression/classification)

24

Details
Set of all features: V={1,…,d}

Define cost function for scoring subsets S of V

is cross-validation error using features in S only

25

L̂(S)

Greedy forward selection
Start with and
For i = 1:d

find best element to add:

compute error:

If break, else set

26

S = ;

si = arg min
j2V \S

L̂(S [{j})

Ei = L̂(S [{si})

E0 = 1

Ei > Ei�1 S S [{si}

Example

27

Problems with greedy forward selection

28

Demo: Forward Selection for Regression

29

Greedy backward selection
Start with and
For i = d:-1:1

find best element to remove:

compute error:

If break, else set

30

S = V

Ei > Ei+1 S S \ {si}

Ei = L̂(S \ {si})

si = argmin
j2S

L̂(S \ {j})

Ed+1 = 1

Demo: Backward Selection for Regression

31

Comparison: FW vs. BW selection

32

Method Forward (FW) Backward (BW)
Advantages Usually faster (if few

relevant features)
Can handle „dependent“
features

Problems with greedy feature selection
Computational cost (need to retrain models many
times for different feature combinations)
Can be suboptimal

Can we solve the learning & feature selection
problem simultaneously via a single optimization?

33

Linear models: Feature selection = Sparsity
So far: explicitly select a subset of features

optimize over coefficients

This is equivalent to constraining to be sparse
(i.e., contain at most k non-zero entries)

34

xS = [xi1 , . . . , xik]

wS = [wi1 , . . . , wik]

w

ŵS = argmin
wS

nX

i=1

(yi �wT
Sxi,S)

2

x = [x1, . . . , xd]

Joint feature selection and training
Would like to solve

where is the number of non-zeros in w
Alternatively, can penalize the number of nonzero entries:

35

||w||0

ŵ = argmin
w

nX

i=1

(yi �wTxi)
2 s.t. ||w||0 k

Making the optimization tractable
Want to solve:

This is a difficult combinatorial optimization problem L

Can view greedy algorithms before as heuristics for
solving it

Key idea: Replace by a more tractable term

36

||w||0

ŵ = argmin
w

nX

i=1

(yi �wTxi)
2+�||w||0

L1 as surrogate for L0

37

The „sparsity trick“

38

||w||0 ||w||1

Sparse regression: The Lasso
Before:

Ridge regression

Uses to control the weights
Slight modification: replace by

L1-regularized regression (the Lasso)

This alternative penalty encourages coefficients to be
exactly 0 è automatic feature selection! 39

min
w

�||w||22 +
nX

i=1

(yi �wTxi)
2

min
w

�||w||1 +
nX

i=1

(yi �wTxi)
2

||w||22 ||w||1
||w||22

Lasso illustration

40

Lasso demo

41

Regularization paths

42

L2
(Ridge)

L1
(Lasso)

How to pick the regularization parameter?

Crossvalidation!

43

Another example: L1-SVM
Before:

Support vector machine

Uses to control the weights
Apply sparsity trick: replace by

L1-SVM

This alternative penalty encourages coefficients to be
exactly 0 è ignores those features! 44

||w||2

min
w

�||w||1 +
nX

i=1

max(0, 1� yiw
Txi)

min
w

�||w||22 +
nX

i=1

max(0, 1� yiw
Txi)

||w||22 ||w||1

Feature selection with L1-SVM

45

Zhu, Ji, Saharon Rosset, Robert Tibshirani, and Trevor J. Hastie.
"1-norm support vector machines." NeurIPS, 2004

Experiment
Data:

38 train, 34 test data from a DNA microarray classification
experiment (leukemia diagnosis)
7129 dimensions

46

Zhu, Ji, Saharon Rosset, Robert Tibshirani, and Trevor J. Hastie.
"1-norm support vector machines." NeurIPS, 2004

l1-SVM demo

47

Solving l1 regularized problems
L1-norm is convex
Combined with convex losses, obtain convex
optimization problems (e.g., Lasso, l1-SVM, …)
Can in principle solve using (stochastic) gradient descent
However, convergence usually slow, and will rarely get
„exact 0“ entries
Much recent work in convex optimization deals with
solving such problems very efficiently

Proximal methods (not discussed in this class)

48

Comparison: Greedy selection vs. L1-Regularization

49

Method Greedy (FW/BW) L1-Regularization
Advantages Applies to any

prediction method
Faster (training and
feature selection happen
jointly)

Disadvantages Slower (need to train
many models)

Only works for linear
models

What do you need to know
What is feature selection
Greedy algorithm (forward and backward)
l1-regularization to encourage sparsity

Example: The Lasso (l1-regression)
Example: l1-SVM

Advantages and disadvantages of the
respective methods

50

Supervised learning summary so far

51

Model/

objective:

Loss-function + Regularization

Squared loss, 0/1 loss,

Perceptron loss, Hinge

loss

L2 norm, L1 norm , L0 penalty

Method: Exact solution, Gradient Descent, (mini-batch) SGD,

Greedy selection, Convex Programming, …

Model selection: K-fold Cross-Validation, Monte Carlo CV

Representation/

features

Linear hypotheses; nonlinear hypotheses with

nonlinear feature transforms

Evaluation

metric:

Mean squared error, Accuracy

52

Supervised learning big picture so far

Least squares
Regression

Perceptron

Ridge
Regression

Linear
SVM

l2-regularizer

l2-regularizer

Loss funct.

Loss funct.

Loss funct.

l1-Regression
(Lasso)

l1-SVM

l1-
re

gu
lar

.

l1-regular.

Loss
funct.

