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Recall: Linear classifiers
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Recall: The Perceptron problem
Solve

where

Optimize via Stochastic Gradient Descent
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`P (w; yi,xi) = max(0,�yiw
Txi)

ŵ = argmin
w

1

n

nX

i=1

`P (w;xi, yi)



Solving non-linear classification tasks
How can we find nonlinear classification boundaries?
Similar as in regression, can use non-linear 
transformations of the feature vectors, followed by
linear classification
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Recall: linear regression for polynomials
We can fit non-linear functions via linear regression, 
using nonlinear features of our data (basis functions)

For example: polynomials (in 1-D)
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f(x) =
dX

i=1

wi�i(x)

f(x) =
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Polynomials in higher dimensions
Suppose we wish to use polynomial features, but our
input is higher-dimensional
Can still use monomial features
Example: Monomials in 2 variables, degree = 2
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Avoiding the feature explosion
Need O(dk) dimensions to represent (multivariate) 
polynomials of degree k on d features
Example: d=10000, k=2 è Need ~100M dimensions

In the following, we can see how we can efficiently
implicitly operate in such high-dimensional feature spaces
(i.e., without ever explicitly computing the transformation)
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Revisiting the Perceptron/SVM
Fundamental insight: Optimal hyperplane lies in the
span of the data

(Handwavy) proof: (Stochastic) gradient descent
starting from 0 constructs such a representation

More abstract proof: Follows from the
„representer theorem“ (not discussed here)
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ŵ =
nX

i=1

↵iyixi

wt+1 = wt + ⌘tytxt [ytw
T
t xt < 0]

wt+1 = wt(1� 2�⌘t) + ⌘tytxt [ytw
T
t xt < 1]

Perceptron:

SVM:



Reformulating the Perceptron
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Advantage of reformulation

Key observation: Objective only depends on 
inner products of pairs of data points
Thus, we can implicitly work in high-dimensional 
spaces, as long as we can do inner products efficiently
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x 7! �(x)

↵̂ = argmin
↵1:n

1

n

nX

i=1

max{0,�
nX

j=1

↵jyiyjx
T
i xj}

xTx0 7! �(x)T�(x0) =: k(x,x0)



„Kernels = efficient inner products“
Often, can be computed much more
efficiently than

Simple example: Polynomial kernel in degree 2
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k(x,x0)
�(x)T�(x0)



Polynomial kernels (degree 2)
Suppose and

Then
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x = [x1, . . . , xd]
T x0 = [x0

1, . . . , x
0
d]
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Polynomial kernels: Fixed degree
The kernel
implicitly represents all monomials of degree m 

How can we get monomials up to order m?
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k(x,x0) = (xTx0)m



Polynomial kernels
The polynomial kernel
implicitly represents all monomials of up to degree m 

Representing the monomials (and computing inner
product explicitly) is exponential in m!!
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k(x,x0) = (1 + xTx0)m



The „Kernel Trick“
Express problem s.t. it only depends on inner products
Replace inner products by kernels

This „trick“ is very widely applicable!
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k(xi,xj)xT
i xj



The „Kernel Trick“
Express problem s.t. it only depends on inner products
Replace inner products by kernels

Example: Perceptron
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The „Kernel Trick“
Express problem s.t. it only depends on inner products
Replace inner products by kernels

Example: Perceptron

Will see further examples later 17
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Derivation: Kernelized Perceptron
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Kernelized Perceptron
Initialize 
For t=1,2,...

Pick data point (xi, ,yi ) uniformly at random
Predict

If set

For new point x, predict
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ŷ = sign
⇣ nX

j=1

↵jyjk(xj ,xi)
⌘

ŷ 6= yi ↵i  ↵i + ⌘t

↵1 = · · · = ↵n = 0

Training

Prediction
ŷ = sign

⇣ nX

j=1

↵jyjk(xj ,x)
⌘



Demo: Kernelized Perceptron
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Questions
What are valid kernels?
How can we select a good kernel for our problem?
Can we use kernels beyond the perceptron?
Kernels work in very high-dimensional spaces. 
Doesn‘t this lead to overfitting?
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Properties of kernel functions
Data space X
A kernel is a function
Can we use any function?

k must be an inner product in a suitable space
èk must be symmetric!

èAre there other properties that it must satisfy?
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k : X ⇥X ! R



Positive semi-definite matrices
Symmetric matrix is positive semidefinite iff
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M 2 Rn⇥n



Kernels è semi-definite matrices
Data space X (possibly infinite)
Kernel function
Take any finite subset of data
Then the kernel (gram) matrix

is positive semidefinite  
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k : X ⇥X ! R
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Semi-definite matrices è kernels
Suppose the data space X={1,...,n} is finite, and we are
given a positive semidefinite matrix
Then we can always construct a feature map

such that
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K 2 Rn⇥n

Ki,j = �(i)T�(j)
� : X ! Rn



Outlook: Mercer‘s Theorem
Let X be a compact subset of and
a kernel function

Then one can expand k in a uniformly convergent
series of bounded functions s.t.

Can be generalized even further
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Rn k : X ⇥X ! Rn
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Definition: kernel functions
Data space X
A kernel is a function satisfying
1) Symmetry: For any it must hold that

2) Positive semi-definiteness: For any n, any set
, the kernel (Gram) matrix

must be positive semi-definite
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k : X ⇥X ! R

S = {x1, . . . ,xn} ✓ X

K =

0

B@
k(x1,x1) . . . k(x1,xn)

...
...

k(xn,x1) . . . k(xn,xn)

1

CA

x,x0 2 X

k(x,x0) = k(x0,x)



Examples of kernels on 
Linear kernel:
Polynomial kernel:
Gaussian (RBF,
squared exp. kernel):

Laplacian kernel:
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Rd

k(x,x0) = xTx0

k(x,x0) = (xTx0 + 1)d

k(x,x0) = exp(�||x� x0||22/h2)

k(x,x0) = exp(�||x� x0||1/h)


