Introduction to Machine Learning

Non-linear prediction with kernels

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

Recall: Linear classifiers

Recall: The Perceptron problem

- Solve

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell_{P}\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)
$$

where

$$
\ell_{P}\left(\mathbf{w} ; y_{i}, \mathbf{x}_{i}\right)=\max \left(0,-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

- Optimize via Stochastic Gradient Descent

Solving non-linear classification tasks

- How can we find nonlinear classification boundaries?
- Similar as in regression, can use non-linear transformations of the feature vectors, followed by linear classification

$$
x_{1}=x_{1} x_{2}=x^{2}
$$

Recall: linear regression for polynomials

- We can fit non-linear functions via linear regression, using nonlinear features of our data (basis functions)

$$
f(\mathbf{x})=\sum_{i=1}^{d} w_{i} \phi_{i}(\mathbf{x})
$$

- For example: polynomials (in 1-D)

$$
f(x)=\sum_{i=0}^{m} w_{i} x^{i}
$$

Polynomials in higher dimensions

- Suppose we wish to use polynomial features, but our input is higher-dimensional
- Can still use monomial features
- Example: Monomials in 2 variables, degree $=2$

Avoiding the feature explosion

- Need O(dk) dimensions to represent (multivariate) polynomials of degree k on d features
- Example: $d=10000, k=2 \rightarrow$ Need $\sim 100 \mathrm{M}$ dimensions
- In the following, we can see how we can efficiently implicitly operate in such high-dimensional feature spaces (i.e., without ever explicitly computing the transformation)

Revisiting the Perceptron/SVM

- Fundamental insight: Optimal hyperplane lies in the span of the data

$$
\hat{\mathbf{w}}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- (Handwavy) proof: (Stochastic) gradient descent starting from 0 constructs such a representation

Perceptron: $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\eta_{t} y_{t} \mathbf{x}_{t}\left[y_{t} \mathbf{w}_{t}^{T} \mathbf{x}_{t}<0\right]$
SVM: $\quad \mathbf{w}_{t+1}=\mathbf{w}_{t}\left(1-2 \lambda \eta_{t}\right)+\eta_{t} y_{t} \mathbf{x}_{t}\left[y_{t} \mathbf{w}_{t}^{T} \mathbf{x}_{t}<1\right]$

- More abstract proof: Follows from the „representer theorem" (not discussed here)

Reformulating the Perceptron

Advantage of reformulation

$$
\hat{\alpha}=\arg \min _{\alpha_{1: n}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,-\sum_{j=1}^{n} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}\right\}
$$

- Key observation: Objective only depends on inner products of pairs of data points
- Thus, we can implicitly work in high-dimensional spaces, as long as we can do inner products efficiently

$$
\begin{aligned}
\mathbf{x} & \mapsto \phi(\mathbf{x}) \\
\mathbf{x}^{T} \mathbf{x}^{\prime} & \mapsto \phi(\mathbf{x})^{T} \phi\left(\mathbf{x}^{\prime}\right)=: k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
\end{aligned}
$$

„Kernels = efficient inner products"

- Often, $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ can be computed much more efficiently than $\phi(\mathbf{x})^{T} \phi\left(\mathbf{x}^{\prime}\right)$
- Simple example: Polynomial kernel in degree 2

Polynomial kernels (degree 2)

- Suppose $\mathbf{x}=\left[x_{1}, \ldots, x_{d}\right]^{T}$ and $\mathbf{x}^{\prime}=\left[x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right]^{T}$
- Then $\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{2}=\left(\sum_{i=1}^{d} x_{i} x_{i}^{\prime}\right)^{2}$

Polynomial kernels: Fixed degree

- The kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{m}$ implicitly represents all monomials of degree m
- How can we get monomials up to order m ?

Polynomial kernels

- The polynomial kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{m}$ implicitly represents all monomials of up to degree m
- Representing the monomials (and computing inner product explicitly) is exponential in m !!

The „Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels

$$
\mathbf{x}_{i}^{T} \mathbf{x}_{j} \Rightarrow k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- This „trick" is very widely applicable!

The „Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels
- Example: Perceptron

The „Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels
- Example: Perceptron

$$
\begin{aligned}
& \hat{\alpha}=\arg \min _{\alpha_{1: n}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,-\sum_{j=1}^{n} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)\right\} \\
& \hat{\alpha}=\arg \min _{\alpha_{1: n}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,-\sum_{j=1}^{n} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}
\end{aligned}
$$

- Will see further examples later

Derivation: Kernelized Perceptron

Kernelized Perceptron

- Initialize $\alpha_{1}=\cdots=\alpha_{n}=0$
- For $t=1,2, \ldots$
- Pick data point $\left(\boldsymbol{x}_{\boldsymbol{i}}, y_{i}\right)$ uniformly at random
- Predict

$$
\hat{y}=\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)\right)
$$

- If $\hat{y} \neq y_{i}$ set $\alpha_{i} \leftarrow \alpha_{i}+\eta_{t}$
- For new point x, predict

Prediction

$$
\hat{y}=\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}_{j}, \mathbf{x}\right)\right)
$$

Demo: Kernelized Perceptron

Questions

- What are valid kernels?
- How can we select a good kernel for our problem?
- Can we use kernels beyond the perceptron?
- Kernels work in very high-dimensional spaces. Doesn't this lead to overfitting?

Properties of kernel functions

- Data space X
- A kernel is a function $k: X \times X \rightarrow \mathbb{R}$
- Can we use any function?
- k must be an inner product in a suitable space
$\rightarrow k$ must be symmetric!
\rightarrow Are there other properties that it must satisfy?

Positive semi-definite matrices

Symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite iff

Kernels \rightarrow semi-definite matrices

- Data space X (possibly infinite)
- Kernel function $k: X \times X \rightarrow \mathbb{R}$
- Take any finite subset of data $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subseteq X$
- Then the kernel (gram) matrix

$$
\mathbf{K}=\left(\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\phi\left(\mathbf{x}_{1}\right)^{T} \phi\left(\mathbf{x}_{1}\right) & \ldots & \phi\left(\mathbf{x}_{1}\right)^{T} \phi\left(\mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
\phi\left(\mathbf{x}_{n}\right)^{T} \phi\left(\mathbf{x}_{1}\right) & \ldots & \phi\left(\mathbf{x}_{n}\right)^{T} \phi\left(\mathbf{x}_{n}\right)
\end{array}\right)
$$

is positive semidefinite

Semi-definite matrices \rightarrow kernels

- Suppose the data space $X=\{1, \ldots, n\}$ is finite, and we are given a positive semidefinite matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$
- Then we can always construct a feature map

$$
\phi: X \rightarrow \mathbb{R}^{n}
$$

such that $\mathbf{K}_{i, j}=\phi(i)^{T} \phi(j)$

Outlook: Mercer's Theorem

Let X be a compact subset of \mathbb{R}^{n} and $k: X \times X \rightarrow \mathbb{R}^{n}$ a kernel function

Then one can expand k in a uniformly convergent series of bounded functions ϕ_{i} s.t.

$$
k\left(x, x^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)
$$

Can be generalized even further

Definition: kernel functions

- Data space X
- A kernel is a function $k: X \times X \rightarrow \mathbb{R}$ satisfying
- 1) Symmetry: For any $\mathbf{x}, \mathbf{x}^{\prime} \in X$ it must hold that $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$
- 2) Positive semi-definiteness: For any n, any set $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subseteq X$, the kernel (Gram) matrix

$$
\mathbf{K}=\left(\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right)
$$

must be positive semi-definite

Examples of kernels on \mathbb{R}^{d}

- Linear kernel: $\quad k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}$
- Polynomial kernel: $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}+1\right)^{d}$
- Gaussian (RBF, squared exp. kernel): $\quad k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2} / h^{2}\right)$
- Laplacian kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{1} / h\right)
$$

Effect of kernel on function class

- Given kernel k, predictors (for kernelized classification) have the form

$$
\hat{y}=\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}_{j}, \mathbf{x}\right)\right)
$$

Example: Gaussian kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2} / h^{2}\right)
$$

Examples of (non)-kernels

$$
k\left(x, x^{\prime}\right)=\sin (x) \cos \left(x^{\prime}\right)
$$

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} M \mathbf{x}^{\prime}
$$

Kernels beyond \mathbb{R}^{d}

- Can define kernels on a variety of objects:
- Sequence kernels
- Graph kernels
- Diffusion kernels
- Kernels on probability distributions
- ...

Example: Graph kernels

- Can define a kernel for measuring similarity between graphs by comparing random walks on both graphs (not further defined here)

Example: Diffusion kernels on graphs

$$
\mathbf{K}=\exp (-\beta \mathbf{L})
$$

- Can measure similarity among nodes in a graph via diffusion kernels (not defined here)

Kernel engineering (composition rules)

- Suppose we have two kernels

$$
k_{1}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \quad k_{2}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

defined on data space X

- Then the following functions are valid kernels:

$$
\begin{aligned}
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=c k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \text { for } c>0 \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=f\left(k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)
\end{aligned}
$$

where f is a polynomial with positive coefficients or the exponential function

Example: ANOVA kernel

Example: Modeling pairwise data

- May want to use kernels to model pairwise data (users x products; genes x patients; ...)

Where are we?

- We've seen how to kernelize the perceptron
- Discussed properties of kernels, and seen examples
- Next questions:
- What kind of predictors / decision boundaries do kernel methods entail?
- Can we use the kernel trick beyond the perceptron?

Kernels as similarity functions

- Recall Perceptron (and SVM) classification rule:

$$
y=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)\right)
$$

- Consider Gaussian kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2} / h^{2}\right)$

Side note: Nearest-neighbor classifiers

- For data point \boldsymbol{x}, predict majority of labels of k nearest neighbors

$$
y=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i}\left[\mathbf{x}_{i} \text { among } k \text { nearest neighbors of } \mathbf{x}\right]\right)
$$

Demo: k-NN

Nearest-neighbor classifiers

- For data point \boldsymbol{x}, predict majority of labels of k nearest neighbors

$$
y=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i}\left[\mathbf{x}_{i} \text { among } k \text { nearest neighbors of } \mathbf{x}\right]\right)
$$

- How to choose k ?
- Cross-validation! $)$

K-NN vs. Kernel Perceptron

- k-Nearest Neighbor:
$y=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i}\left[\mathbf{x}_{i}\right.\right.$ among k nearest neighbors of $\left.\left.\mathbf{x}\right]\right)$
- Kernel Perceptron:

$$
y=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)\right)
$$

Comparison: k-NN vs Kernelized Perceptron

Method	$k-N N$
Advantages	No training necessary
Disadvantages	Depends on all data \rightarrow inefficient

Kernelized Perceptron
Optimized weights can
lead to improved performance
Can capture „global trends" with suitable kernels
Depends on „wrongly classified" examples only
Training requires
optimization

Parametric vs nonparametric learning

- Parametric models have finite set of parameters
- Example: Linear regression, linear Perceptron, ...
- Nonparametric models grow in complexity with the size of the data
- Potentially much more expressive
- But also more computationally complex - Why?
- Example: Kernelized Perceptron, k-NN, ...
- Kernels provide a principled way of deriving nonparametric models from parametric ones

Where are we?

- We've seen how to kernelize the perceptron
- Discussed properties of kernels, and seen examples
- Next question:
- Can we use the kernel trick beyond the perceptron?

Kernelized SVM

- The support vector machine

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right\}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

can also be kernelized

How to kernelize the objective?

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right\}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

How to kernelize the regularizer?

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right\}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

Learning \& prediction with kernel classifier

- Learning: Solve the problem

Per- $\arg \min _{\alpha} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,-y_{i} \alpha^{T} \mathbf{k}_{i}\right\}$
Or:

SVM: $\arg \min _{\alpha} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i} \alpha^{T} \mathbf{k}_{i}\right\}+\lambda \alpha^{T} \mathbf{D}_{\mathbf{y}} \mathbf{K D}_{\mathbf{y}} \alpha$

$$
\mathbf{k}_{i}=\left[y_{1} k\left(\mathbf{x}_{i}, \mathbf{x}_{1}\right), \ldots, y_{n} k\left(\mathbf{x}_{i}, \mathbf{x}_{n}\right)\right]
$$

- Prediction: For data point \boldsymbol{x} predict label \boldsymbol{y} as

$$
\hat{y}=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)\right)
$$

Demo: Kernelized SVM

Kernelized Linear Regression

- From linear to nonlinear regression:

- Can also kernelize linear regression
- Predictor has the form

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Example: Kernelized linear regression

- Original (parametric) linear optimization problem

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Similar as in perceptron, optimal lies in span of data:

$$
\hat{\mathbf{w}}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}
$$

Kernelizing linear regression

$\hat{\mathbf{w}}=\arg \min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2}$
$\hat{\mathbf{w}}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$

Kernelized linear regression

$$
\hat{\alpha}=\arg \min _{\alpha_{1: n}} \frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-y_{i}\right)^{2}+\lambda \alpha^{T} \mathbf{K} \alpha \quad \mathbf{K}=\left(\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right)
$$

Learning \& Predicting with KLR

- Learning: Solve least squares problem

$$
\hat{\alpha}=\arg \min _{\alpha} \frac{1}{n}\left\|\alpha^{T} \mathbf{K}-\mathbf{y}\right\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

Closed-form solution: $\quad \hat{\alpha}=(\mathbf{K}+n \lambda \mathbf{I})^{-1} \mathbf{y}$

- Prediction: For data point \boldsymbol{x} predict response \boldsymbol{y} as

$$
\hat{y}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Demo: Kernelized linear regression

KLR for the linear kernel

- What if $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}$?

Application: semi-parametric regression

- Often, parametric models are too „rigid", and nonparametric models fail to extrapolate
- Solution: Use additive combination of linear and nonlinear kernel function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=c_{1} \exp \left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2} / h^{2}\right)+c_{2} \mathbf{x}^{T} \mathbf{x}^{\prime}
$$

Demo: Semi-parametric KLR

Example

Example fits

Application: Designing P450s chimeras

[with Phil Romero, Frances Arnold PNAS'13]

Design space

Parent
 sequences

Protein Fitness Landscape

Application: Protein Engineering

[with Romero, Arnold, PNAS '13]

Wet-lab results [w Romero, Arnold PNAS '13]

- Identification of new thermostable P450s chimera
- 5.3C more stable than best published sequence!

Choosing kernels

- For a given kernel, how should we choose parameters?
- Cross-validation! ©
- How should we select suitable kernels?
- Domain knowledge (dependent on data type)
- «Brute force» (or heuristic) search
- Use cross-validation
- Learning kernels
- Much research on automatically selecting good kernels (Multiple Kernel Learning; Hyperkernels; etc.)

Parameter demo

What about overfitting?

- Kernels map to (very) high-dimensional spaces.
- Why do we hope to be able to learn?
- First attempt of an answer:
(typically) \# parameters << \# dimensions. Why?
- Number of parameters = number of data points (,,non-parametric learning")

What about overfitting?

- Kernels map to (very) high-dimensional spaces.
- Why do we hope to be able to learn?
- Second attempt of an answer:
- Overfitting can of course happen (if we choose poor parameters)
- Can combat overfitting by regularization
- This is already built into kernelized linear regression (and SVMs), but not the kernelized Perceptron
$\mathrm{KLR}: \quad \hat{\alpha}=\arg \min _{\alpha} \frac{1}{n}\left\|\alpha^{T} \mathbf{K}-\mathbf{y}\right\|_{2}^{2}+\lambda \alpha^{T} \mathbf{K} \alpha$
SVM:

$$
\hat{\alpha}=\arg \min _{\alpha} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i} \alpha^{T} \mathbf{k}_{i}\right\}+\lambda \alpha^{T} \mathbf{D}_{\mathbf{y}} \mathbf{K} \mathbf{D}_{\mathbf{y}} \alpha
$$

What you need to know

- Kernels are
- (efficient, implicit) inner products
- Positive (semi-)definite functions
- Many examples (linear, polynomial, Gaussian/RBF, ...)
- The „Kernel trick"
- Reformulate learning algorithm so that inner products appear
- Replace inner products by kernels
- K-Nearest Neighbor classifier (and relation to Perceptron)
- How to choose kernels (kernel engineering etc.)
- Applications: Kernelized Perceptron / SVM; kernelized linear regression

Supervised learning big picture so far

Supervised learning summary so far

Representation/ Linear hypotheses; nonlinear hypotheses with features nonlinear feature transforms; kernels

Loss-function + Regularization
Squared loss, 0/1 loss, Perceptron loss, Hinge loss
L^{2} norm, L^{1} norm

Method:
Exact solution, Gradient Descent, (mini-batch) SGD, Convex Programming, ...

Evaluation metric:

Mean squared error, Accuracy

Model selection: K-fold Cross-Validation, Monte Carlo CV

