
Introduction to
Machine Learning

Non-linear prediction with kernels

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

http://las.ethz.ch

Recall: Linear classifiers

2

+

–
+
++

+

+

–
– –

–
–

–

–+
–

w

ŷ = sign(wTx)

Recall: The Perceptron problem
Solve

where

Optimize via Stochastic Gradient Descent

3

`P (w; yi,xi) = max(0,�yiw
Txi)

ŵ = argmin
w

1

n

nX

i=1

`P (w;xi, yi)

Solving non-linear classification tasks
How can we find nonlinear classification boundaries?
Similar as in regression, can use non-linear
transformations of the feature vectors, followed by
linear classification

4

Recall: linear regression for polynomials
We can fit non-linear functions via linear regression,
using nonlinear features of our data (basis functions)

For example: polynomials (in 1-D)

5

f(x) =
dX

i=1

wi�i(x)

f(x) =
mX

i=0

wix
i

Polynomials in higher dimensions
Suppose we wish to use polynomial features, but our
input is higher-dimensional
Can still use monomial features
Example: Monomials in 2 variables, degree = 2

6

Avoiding the feature explosion
Need O(dk) dimensions to represent (multivariate)
polynomials of degree k on d features
Example: d=10000, k=2 è Need ~100M dimensions

In the following, we can see how we can efficiently
implicitly operate in such high-dimensional feature spaces
(i.e., without ever explicitly computing the transformation)

7

Revisiting the Perceptron/SVM
Fundamental insight: Optimal hyperplane lies in the
span of the data

(Handwavy) proof: (Stochastic) gradient descent
starting from 0 constructs such a representation

More abstract proof: Follows from the
„representer theorem“ (not discussed here)

8

ŵ =
nX

i=1

↵iyixi

wt+1 = wt + ⌘tytxt [ytw
T
t xt < 0]

wt+1 = wt(1� 2�⌘t) + ⌘tytxt [ytw
T
t xt < 1]

Perceptron:

SVM:

Reformulating the Perceptron

9

Advantage of reformulation

Key observation: Objective only depends on
inner products of pairs of data points
Thus, we can implicitly work in high-dimensional
spaces, as long as we can do inner products efficiently

10

x 7! �(x)

↵̂ = argmin
↵1:n

1

n

nX

i=1

max{0,�
nX

j=1

↵jyiyjx
T
i xj}

xTx0 7! �(x)T�(x0) =: k(x,x0)

„Kernels = efficient inner products“
Often, can be computed much more
efficiently than

Simple example: Polynomial kernel in degree 2

11

k(x,x0)
�(x)T�(x0)

Polynomial kernels (degree 2)
Suppose and

Then

12

x = [x1, . . . , xd]
T x0 = [x0

1, . . . , x
0
d]

T

(xTx0)2 =

dX

i=1

xix
0
i

!2

Polynomial kernels: Fixed degree
The kernel
implicitly represents all monomials of degree m

How can we get monomials up to order m?

13

k(x,x0) = (xTx0)m

Polynomial kernels
The polynomial kernel
implicitly represents all monomials of up to degree m

Representing the monomials (and computing inner
product explicitly) is exponential in m!!

14

k(x,x0) = (1 + xTx0)m

The „Kernel Trick“
Express problem s.t. it only depends on inner products
Replace inner products by kernels

This „trick“ is very widely applicable!

15

k(xi,xj)xT
i xj

The „Kernel Trick“
Express problem s.t. it only depends on inner products
Replace inner products by kernels

Example: Perceptron

16

The „Kernel Trick“
Express problem s.t. it only depends on inner products
Replace inner products by kernels

Example: Perceptron

Will see further examples later 17

↵̂ = argmin
↵1:n

1

n

nX

i=1

max{0,�
nX

j=1

↵jyiyjx
T
i xj}

↵̂ = argmin
↵1:n

1

n

nX

i=1

max{0,�
nX

j=1

↵jyiyjk(xi,xj)}

Derivation: Kernelized Perceptron

18

Kernelized Perceptron
Initialize
For t=1,2,...

Pick data point (xi, ,yi) uniformly at random
Predict

If set

For new point x, predict

19

ŷ = sign
⇣ nX

j=1

↵jyjk(xj ,xi)
⌘

ŷ 6= yi ↵i ↵i + ⌘t

↵1 = · · · = ↵n = 0

Training

Prediction
ŷ = sign

⇣ nX

j=1

↵jyjk(xj ,x)
⌘

Demo: Kernelized Perceptron

20

Questions
What are valid kernels?
How can we select a good kernel for our problem?
Can we use kernels beyond the perceptron?
Kernels work in very high-dimensional spaces.
Doesn‘t this lead to overfitting?

21

Properties of kernel functions
Data space X
A kernel is a function
Can we use any function?

k must be an inner product in a suitable space
èk must be symmetric!

èAre there other properties that it must satisfy?
22

k : X ⇥X ! R

Positive semi-definite matrices
Symmetric matrix is positive semidefinite iff

23

M 2 Rn⇥n

Kernels è semi-definite matrices
Data space X (possibly infinite)
Kernel function
Take any finite subset of data
Then the kernel (gram) matrix

is positive semidefinite

24

k : X ⇥X ! R
S = {x1, . . . ,xn} ✓ X

K =

0

B@
k(x1,x1) . . . k(x1,xn)

...
...

k(xn,x1) . . . k(xn,xn)

1

CA =

0

B@
�(x1)T�(x1) . . . �(x1)T�(xn)

...
...

�(xn)T�(x1) . . . �(xn)T�(xn)

1

CA

Semi-definite matrices è kernels
Suppose the data space X={1,...,n} is finite, and we are
given a positive semidefinite matrix
Then we can always construct a feature map

such that

25

K 2 Rn⇥n

Ki,j = �(i)T�(j)
� : X ! Rn

Outlook: Mercer‘s Theorem
Let X be a compact subset of and
a kernel function

Then one can expand k in a uniformly convergent
series of bounded functions s.t.

Can be generalized even further
26

Rn k : X ⇥X ! Rn

�i

k(x, x0) =
1X

i=1

�i �i(x)�i(x
0)

Definition: kernel functions
Data space X
A kernel is a function satisfying
1) Symmetry: For any it must hold that

2) Positive semi-definiteness: For any n, any set
, the kernel (Gram) matrix

must be positive semi-definite
27

k : X ⇥X ! R

S = {x1, . . . ,xn} ✓ X

K =

0

B@
k(x1,x1) . . . k(x1,xn)

...
...

k(xn,x1) . . . k(xn,xn)

1

CA

x,x0 2 X

k(x,x0) = k(x0,x)

Examples of kernels on
Linear kernel:
Polynomial kernel:
Gaussian (RBF,
squared exp. kernel):

Laplacian kernel:

28

Rd

k(x,x0) = xTx0

k(x,x0) = (xTx0 + 1)d

k(x,x0) = exp(�||x� x0||22/h2)

k(x,x0) = exp(�||x� x0||1/h)

Effect of kernel on function class
Given kernel k, predictors (for kernelized
classification) have the form

29

ŷ = sign
⇣ nX

j=1

↵jyjk(xj ,x)
⌘

Example: Gaussian kernel

30

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

Bandwidth h=.1

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Bandwidth h=.3

k(x,x0) = exp(�||x� x0||22/h2)

f(x) =
nX

i=1

↵ik(xi,x)

Examples of (non)-kernels

31

k(x, x0) = sin(x) cos(x0)

k(x,x0) = xTMx0

Kernels beyond
Can define kernels on a variety of objects:

Sequence kernels
Graph kernels
Diffusion kernels
Kernels on probability distributions
...

32

Rd

Example: Graph kernels

Can define a kernel for measuring similarity between
graphs by comparing random walks on both graphs
(not further defined here)

33

[Borgwardt et al.]

Example: Diffusion kernels on graphs

Can measure similarity among nodes in a graph via
diffusion kernels (not defined here)

34

s1 s2 s3

s4

s5 s7
s6

s11

s12

s9 s10

s8

s1 s3

s12

s9

K = exp(��L)

Kernel engineering (composition rules)
Suppose we have two kernels

defined on data space X
Then the following functions are valid kernels:

where f is a polynomial with positive coefficients or
the exponential function 35

k1 : X ⇥ X ! R k2 : X ⇥ X ! R

k(x,x0) = k1(x,x
0) + k2(x,x

0)

k(x,x0) = c k1(x,x
0) for c > 0

k(x,x0) = k1(x,x
0) k2(x,x

0)

k(x,x0) = f(k1(x,x
0))

Example: ANOVA kernel

36

Example: Modeling pairwise data

37

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−10

−8

−6

−4

−2

0

2

4

6

8

ActionsContexts

Pa
yo
ffs

−1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1
−3

−2

−1

0

1

2

3

ActionsContexts

Pa
yo
ffs

May want to use kernels to model pairwise data
(users x products; genes x patients; ...)

Where are we?
We’ve seen how to kernelize the perceptron
Discussed properties of kernels, and seen examples

Next questions:
What kind of predictors / decision boundaries do kernel
methods entail?
Can we use the kernel trick beyond the perceptron?

38

Kernels as similarity functions
Recall Perceptron (and SVM) classification rule:

Consider Gaussian kernel

39

y = sign

nX

i=1

↵iyik(xi,x)

!

k(x,x0) = exp(�||x� x0||2/h2)

Side note: Nearest-neighbor classifiers
For data point x, predict majority of labels of
k nearest neighbors

40

y = sign

nX

i=1

yi[xi among k nearest neighbors of x]

!

Demo: k-NN

41

Nearest-neighbor classifiers
For data point x, predict majority of labels of
k nearest neighbors

How to choose k?

Cross-validation! J

42

y = sign

nX

i=1

yi[xi among k nearest neighbors of x]

!

K-NN vs. Kernel Perceptron
k-Nearest Neighbor:

Kernel Perceptron:

43

y = sign

nX

i=1

yi↵ik(xi,x)

!

y = sign

nX

i=1

yi[xi among k nearest neighbors of x]

!

Comparison: k-NN vs Kernelized Perceptron

44

Method k-NN Kernelized Perceptron
Advantages No training

necessary
Optimized weights can
lead to improved
performance
Can capture „global
trends“ with suitable
kernels
Depends on „wrongly
classified“ examples only

Disadvantages Depends on all data
è inefficient

Training requires
optimization

Parametric vs nonparametric learning
Parametric models have finite set of parameters
Example: Linear regression, linear Perceptron, ...

Nonparametric models grow in complexity with the
size of the data

Potentially much more expressive
But also more computationally complex – Why?

Example: Kernelized Perceptron, k-NN, ...

Kernels provide a principled way of deriving non-
parametric models from parametric ones

45

Where are we?
We’ve seen how to kernelize the perceptron
Discussed properties of kernels, and seen examples

Next question:
Can we use the kernel trick beyond the perceptron?

46

Kernelized SVM
The support vector machine

can also be kernelized

47

ŵ = argmin
w

1

n

nX

i=1

max{0, 1� yiw
Txi}+ �||w||22

How to kernelize the objective?

48

ŵ = argmin
w

1

n

nX

i=1

max{0, 1� yiw
Txi}+ �||w||22

How to kernelize the regularizer?

49

ŵ = argmin
w

1

n

nX

i=1

max{0, 1� yiw
Txi}+ �||w||22

Learning & prediction with kernel classifier
Learning: Solve the problem

Prediction: For data point x predict label y as

50

ki = [y1k(xi,x1), . . . , ynk(xi,xn)]

Per-
ceptron:

SVM:

Or:

argmin
↵

1

n

nX

i=1

max{0, 1� yi↵
Tki}+ �↵TDyKDy↵

argmin
↵

1

n

nX

i=1

max{0, � yi↵
Tki}

ŷ = sign

nX

i=1

↵iyik(xi,x)

!

Demo: Kernelized SVM

51

Kernelized Linear Regression
From linear to nonlinear regression:

Can also kernelize linear regression
Predictor has the form

52

f(x) =
nX

i=1

↵ik(xi,x)

+
++

++ ++
+ +

x

f(x)

++ ++

+
+

++
+ +

+ + +
+ +

+

x

f(x)

Example: Kernelized linear regression
Original (parametric) linear optimization problem

Similar as in perceptron, optimal lies in span of data:

53

ŵ = argmin
w

1

n

nX

i=1

⇣
wTxi � yi

⌘2
+ �||w||22

ŵ =
nX

i=1

↵ixi

Kernelizing linear regression

54

ŵ = argmin
w

1

n

nX

i=1

⇣
wTxi � yi

⌘2
+ �||w||22 ŵ =

nX

i=1

↵ixi

Kernelized linear regression

55

K =

0

B@
k(x1,x1) . . . k(x1,xn)

...
...

k(xn,x1) . . . k(xn,xn)

1

CA↵̂ = argmin
↵1:n

1

n

nX

i=1

⇣ nX

j=1

↵jk(xi,xj)� yi
⌘2

+ �↵TK↵

Learning & Predicting with KLR
Learning: Solve least squares problem

Closed-form solution:

Prediction: For data point x predict response y as

56

ŷ =
nX

i=1

↵̂ik(xi,x)

↵̂ = argmin
↵

1

n
||↵TK� y||22 + �↵TK↵

↵̂ = (K+ n�I)�1y

Demo: Kernelized linear regression

57

KLR for the linear kernel
What if ?

58

k(x,x0) = xTx0

Application: semi-parametric regression
Often, parametric models are too „rigid“, and non-
parametric models fail to extrapolate
Solution: Use additive combination of linear and non-
linear kernel function

59

k(x,x0) = c1 exp(||x� x0||22/h2) + c2x
Tx0

Demo: Semi-parametric KLR

60

Example

61

Example fits

62

Application: Designing P450s chimeras
[with Phil Romero, Frances Arnold PNAS‘13]

63

Design space

64

Parent
sequences

Candidate
designs

ABC 1 2 3 ... n

Protein Fitness Landscape

65

Th
er

m
os

ta
bi

lit
y

x

x

x

Application: Protein Engineering
[with Romero, Arnold, PNAS ‘13]

66

Wet-lab results
[w Romero, Arnold PNAS ’13]

Identification of new thermostable P450s chimera
5.3C more stable than best published sequence!

67

Choosing kernels
For a given kernel, how should we choose parameters?

Cross-validation! J
How should we select suitable kernels?

Domain knowledge (dependent on data type)
«Brute force» (or heuristic) search
Use cross-validation

Learning kernels
Much research on automatically selecting good kernels
(Multiple Kernel Learning; Hyperkernels; etc.)

68

Parameter demo

69

What about overfitting?
Kernels map to (very) high-dimensional spaces.
Why do we hope to be able to learn?
First attempt of an answer:
(typically) # parameters << # dimensions. Why?

Number of parameters = number of data points
(„non-parametric learning“)

70

What about overfitting?
Kernels map to (very) high-dimensional spaces.
Why do we hope to be able to learn?
Second attempt of an answer:
Overfitting can of course happen
(if we choose poor parameters)
Can combat overfitting by regularization

This is already built into kernelized linear regression
(and SVMs), but not the kernelized Perceptron

71

KLR:

SVM:

↵̂ = argmin
↵

1

n
||↵TK� y||22 + �↵TK↵

↵̂ = argmin
↵

1

n

nX

i=1

max{0, 1� yi↵
Tki}+ �↵TDyKDy↵

What you need to know
Kernels are

(efficient, implicit) inner products

Positive (semi-)definite functions

Many examples (linear, polynomial, Gaussian/RBF, ...)

The „Kernel trick“
Reformulate learning algorithm so that inner products appear

Replace inner products by kernels

K-Nearest Neighbor classifier (and relation to Perceptron)

How to choose kernels (kernel engineering etc.)

Applications: Kernelized Perceptron / SVM; kernelized
linear regression

72

73

Supervised learning big picture so far

Least squares
Regression

Perceptron

Ridge
Regression

Linear
SVM

Kernelized
Regression

Kernelized
SVM

l2-regularizer

l2-regularizer

Kernels

Kernels

Loss funct.

Loss funct.

k-NN „Special

case“

Kernelized
Perceptron

Kernels

Loss funct.

Lassol1-regular.

l1-SVM l1-regular.

Supervised learning summary so far

74

Model/
objective:

Loss-function + Regularization
Squared loss, 0/1 loss,
Perceptron loss, Hinge loss

L2 norm, L1 norm

Method: Exact solution, Gradient Descent, (mini-batch) SGD,
Convex Programming, …

Model selection: K-fold Cross-Validation, Monte Carlo CV

Representation/
features

Linear hypotheses; nonlinear hypotheses with
nonlinear feature transforms; kernels

Evaluation
metric:

Mean squared error, Accuracy

