ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction to Machine Learning

Non-linear prediction with kernels

Prof. Andreas Krause Learning and Adaptive Systems (<u>las.ethz.ch</u>)

Recall: Linear classifiers

$$\hat{y} = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

Recall: The Perceptron problem

• Solve
$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell_P(\mathbf{w}; \mathbf{x}_i, y_i)$$

where
$$\ell_P(\mathbf{w}; y_i, \mathbf{x}_i) = \max(0, -y_i \mathbf{w}^T \mathbf{x}_i)$$

Optimize via Stochastic Gradient Descent

Solving non-linear classification tasks

- How can we find nonlinear classification boundaries?
- Similar as in regression, can use non-linear transformations of the feature vectors, followed by linear classification

 $x_1 = x_1 x_2 = x^2$

Recall: linear regression for polynomials

 We can fit non-linear functions via linear regression, using nonlinear features of our data (basis functions)

$$f(\mathbf{x}) = \sum_{i=1}^{d} w_i \phi_i(\mathbf{x})$$

For example: polynomials (in 1-D)

$$f(x) = \sum_{i=0}^{m} w_i x^i$$

Polynomials in higher dimensions

- Suppose we wish to use polynomial features, but our input is higher-dimensional
- Can still use monomial features
- **Example**: Monomials in 2 variables, degree = 2

Avoiding the feature explosion

- Need O(d^k) dimensions to represent (multivariate) polynomials of degree k on d features
- Example: *d=10000, k=2* → Need ~*100M* dimensions
- In the following, we can see how we can efficiently implicitly operate in such high-dimensional feature spaces (i.e., without ever explicitly computing the transformation)

Revisiting the Perceptron/SVM

• Fundamental insight: Optimal hyperplane lies in the span of the data \underline{n}

$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

• (Handwavy) proof: (Stochastic) gradient descent starting from 0 constructs such a representation

Perceptron: $\mathbf{w}_{t+1} = \mathbf{w}_t + \eta_t y_t \mathbf{x}_t [y_t \mathbf{w}_t^T \mathbf{x}_t < 0]$

SVM: $\mathbf{w}_{t+1} = \mathbf{w}_t (1 - 2\lambda\eta_t) + \eta_t y_t \mathbf{x}_t [y_t \mathbf{w}_t^T \mathbf{x}_t < 1]$

 More abstract proof: Follows from the "representer theorem" (not discussed here)

Reformulating the Perceptron

Advantage of reformulation

$$\hat{\alpha} = \arg\min_{\alpha_{1:n}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, -\sum_{j=1}^{n} \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j\}$$

- Key observation: Objective only depends on inner products of pairs of data points
- Thus, we can implicitly work in high-dimensional spaces, as long as we can do inner products efficiently

$$\mathbf{x} \mapsto \phi(\mathbf{x})$$
$$\mathbf{x}^T \mathbf{x}' \mapsto \phi(\mathbf{x})^T \phi(\mathbf{x}') =: k(\mathbf{x}, \mathbf{x}')$$

"Kernels = *efficient* inner products"

- Often, $k(\mathbf{x}, \mathbf{x'})$ can be computed much more efficiently than $\phi(\mathbf{x})^T \phi(\mathbf{x'})$
- Simple example: Polynomial kernel in degree 2

Polynomial kernels (degree 2)

• Suppose $\mathbf{x} = [x_1, \dots, x_d]^T$ and $\mathbf{x}' = [x_1', \dots, x_d']^T$

• Then
$$(\mathbf{x}^T \mathbf{x}')^2 = \left(\sum_{i=1}^d x_i x_i'\right)^2$$

Polynomial kernels: Fixed degree

• The kernel $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^m$ implicitly represents all monomials of degree m

How can we get monomials up to order m?

Polynomial kernels

• The polynomial kernel $k(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^m$ implicitly represents all monomials of up to degree m

 Representing the monomials (and computing inner product explicitly) is *exponential* in *m*!!

The "Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels

$$\mathbf{x}_i^T \mathbf{x}_j \quad \triangleright \quad k(\mathbf{x}_i, \mathbf{x}_j)$$

This "trick" is very widely applicable!

The "Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels
- Example: Perceptron

The "Kernel Trick"

- Express problem s.t. it only depends on inner products
 Replace inner products by kernels

Will see further examples later

Derivation: Kernelized Perceptron

Kernelized Perceptron

• Initialize $\alpha_1 = \cdots = \alpha_n = 0$

Training

For *t=1,2,...*Pick data point (*x_i, y_i*) uniformly at random

For

• Predict $\hat{y} = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{j} y_{j} k(\mathbf{x}_{j}, \mathbf{x}_{i})\right)$

• If
$$\hat{y} \neq y_i$$
 set $\alpha_i \leftarrow \alpha_i + \eta_t$

Prediction

new point x, predict

$$\hat{y} = \operatorname{sign}\left(\sum_{j=1}^{n} \alpha_j y_j k(\mathbf{x}_j, \mathbf{x})\right)$$

Demo: Kernelized Perceptron

Questions

- What are valid kernels?
- How can we select a good kernel for our problem?
- Can we use kernels beyond the perceptron?
- Kernels work in very high-dimensional spaces.
 Doesn't this lead to overfitting?

Properties of kernel functions

- Data space X
- A kernel is a function $k: X \times X \to \mathbb{R}$
- Can we use any function?
- *k* must be an inner product in a suitable space
 → *k* must be symmetric!

→ Are there other properties that it must satisfy?

Positive semi-definite matrices

Symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite iff

Kernels semi-definite matrices

- Data space X (possibly infinite)
- Kernel function $k: X \times X \to \mathbb{R}$
- Take any finite subset of data $S = {\mathbf{x}_1, \dots, \mathbf{x}_n} \subseteq X$
- Then the kernel (gram) matrix

$$\mathbf{K} = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \dots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \dots & k(\mathbf{x}_n, \mathbf{x}_n) \end{pmatrix} = \begin{pmatrix} \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_n) \\ \vdots & & \vdots \\ \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_n) \end{pmatrix}$$

is positive semidefinite

- Suppose the data space $X = \{1, ..., n\}$ is finite, and we are given a positive semidefinite matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$
- Then we can always construct a feature map

 $\phi: X \to \mathbb{R}^n$ such that $\mathbf{K}_{i,j} = \phi(i)^T \phi(j)$

Outlook: Mercer's Theorem

Let X be a compact subset of \mathbb{R}^n and $k: X \times X \to \mathbb{R}^n$ a kernel function

Then one can expand k in a uniformly convergent series of bounded functions ϕ_i s.t.

$$k(x, x') = \sum_{i=1}^{\infty} \lambda_i \phi_i(x)\phi_i(x')$$

Can be generalized even further

Definition: kernel functions

- Data space X
- A kernel is a function $k: X \times X \to \mathbb{R}$ satisfying
- 1) Symmetry: For any $\mathbf{x}, \mathbf{x}' \in X$ it must hold that $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$
- 2) Positive semi-definiteness: For any *n*, any set $S = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subseteq X, \text{ the kernel (Gram) matrix}$ $\mathbf{K} = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \dots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \dots & k(\mathbf{x}_n, \mathbf{x}_n) \end{pmatrix}$

must be positive semi-definite

Examples of kernels on \mathbb{R}^d

- Linear kernel:
- Polynomial kernel:

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$
$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^d$$

• Gaussian (RBF, squared exp. kernel): $k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||_2^2/h^2)$

• Laplacian kernel:
$$k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||_1/h)$$

Effect of kernel on function class

Given kernel k, predictors (for kernelized classification) have the form

$$\hat{y} = \operatorname{sign}\left(\sum_{j=1}^{n} \alpha_j y_j k(\mathbf{x}_j, \mathbf{x})\right)$$

Example: Gaussian kernel

$$k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||_2^2/h^2)$$

Bandwidth h=.3

Bandwidth h=.1

Examples of (non)-kernels

$$k(x, x') = \sin(x)\cos(x')$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T M \mathbf{x}'$$

Kernels beyond \mathbb{R}^d

- Can define kernels on a variety of objects:
- Sequence kernels
- Graph kernels
- Diffusion kernels
- Kernels on probability distributions

• • • •

Example: Graph kernels

 Can define a kernel for measuring similarity between graphs by comparing random walks on both graphs (not further defined here)

Example: Diffusion kernels on graphs

 Can measure similarity among nodes in a graph via diffusion kernels (not defined here)

Kernel engineering (composition rules)

Suppose we have two kernels

 $k_1: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ $k_2: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

defined on data space X

Then the following functions are valid kernels:

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') \ k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = c \ k_1(\mathbf{x}, \mathbf{x}') \ \text{for } c > 0$$

$$k(\mathbf{x}, \mathbf{x}') = f(k_1(\mathbf{x}, \mathbf{x}'))$$

where *f* is a polynomial with positive coefficients or the exponential function

Example: ANOVA kernel
Example: Modeling pairwise data

 May want to use kernels to model pairwise data (users x products; genes x patients; ...)

Where are we?

- We've seen how to kernelize the perceptron
- Discussed properties of kernels, and seen examples
- Next questions:
 - What kind of predictors / decision boundaries do kernel methods entail?
 - Can we use the kernel trick beyond the perceptron?

Kernels as similarity functions

Recall Perceptron (and SVM) classification rule:

$$y = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x})\right)$$

• Consider Gaussian kernel $k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||^2/h^2)$

Side note: Nearest-neighbor classifiers

 For data point *x*, predict majority of labels of k nearest neighbors

$$y = \operatorname{sign}\left(\sum_{i=1}^{n} y_i [\mathbf{x}_i \text{ among } k \text{ nearest neighbors of } \mathbf{x}]\right)$$

Demo: k-NN

Nearest-neighbor classifiers

 For data point *x*, predict majority of labels of k nearest neighbors

 $y = \operatorname{sign}\left(\sum_{i=1}^{n} y_i [\mathbf{x}_i \text{ among } k \text{ nearest neighbors of } \mathbf{x}]\right)$

- How to choose k?
 - Cross-validation! ③

K-NN vs. Kernel Perceptron

• k-Nearest Neighbor:

$$y = \operatorname{sign}\left(\sum_{i=1}^{n} y_i [\mathbf{x}_i \text{ among } k \text{ nearest neighbors of } \mathbf{x}]\right)$$

• Kernel Perceptron:

$$y = \operatorname{sign}\left(\sum_{i=1}^{n} y_i \alpha_i k(\mathbf{x}_i, \mathbf{x})\right)$$

Comparison: k-NN vs Kernelized Perceptron

Method	k-NN	Kernelized Perceptron
Advantages	No training necessary	Optimized weights can lead to improved performance Can capture "global trends" with suitable kernels Depends on "wrongly classified" examples only
Disadvantages	Depends on all data inefficient	Training requires optimization

Parametric vs nonparametric learning

- Parametric models have finite set of parameters
- Example: Linear regression, linear Perceptron, ...
- Nonparametric models grow in complexity with the size of the data
 - Potentially much more expressive
 - But also more computationally complex Why?
- Example: Kernelized Perceptron, k-NN, ...
- Kernels provide a principled way of deriving nonparametric models from parametric ones

Where are we?

- We've seen how to kernelize the perceptron
- Discussed properties of kernels, and seen examples
- Next question:
 - Can we use the kernel trick beyond the perceptron?

Kernelized SVM

The support vector machine

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\} + \lambda ||\mathbf{w}||_2^2$$

can also be kernelized

How to kernelize the objective?

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\} + \lambda ||\mathbf{w}||_2^2$$

How to kernelize the regularizer?

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\} + \lambda ||\mathbf{w}||_2^2$$

Learning & prediction with kernel classifier

Learning: Solve the problem

Per-
ceptron:
$$\arg \min_{\alpha} \frac{1}{n} \sum_{i=1}^{n} \max\{0, -y_i \alpha^T \mathbf{k}_i\}$$
 Or:

SVM:
$$\arg\min_{\alpha} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i \alpha^T \mathbf{k}_i\} + \lambda \alpha^T \mathbf{D}_{\mathbf{y}} \mathbf{K} \mathbf{D}_{\mathbf{y}} \alpha$$

$$\mathbf{k}_i = [y_1 k(\mathbf{x}_i, \mathbf{x}_1), \dots, y_n k(\mathbf{x}_i, \mathbf{x}_n)]$$

Prediction: For data point x predict label y as

$$\hat{y} = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x})\right)$$

Demo: Kernelized SVM

Kernelized Linear Regression

• From linear to nonlinear regression:

- Can also kernelize linear regression
- Predictor has the form

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

Example: Kernelized linear regression

Original (parametric) linear optimization problem

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w}^{T} \mathbf{x}_{i} - y_{i} \right)^{2} + \lambda ||\mathbf{w}||_{2}^{2}$$

Similar as in perceptron, optimal lies in span of data:

$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$$

Kernelizing linear regression

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w}^T \mathbf{x}_i - y_i \right)^2 + \lambda ||\mathbf{w}||_2^2 \qquad \hat{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$$

Kernelized linear regression

$$\hat{\alpha} = \arg\min_{\alpha_{1:n}} \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) - y_i \right)^2 + \lambda \alpha^T \mathbf{K} \alpha \quad \mathbf{K} = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \dots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \dots & k(\mathbf{x}_n, \mathbf{x}_n) \end{pmatrix}$$

Learning & Predicting with KLR

Learning: Solve least squares problem

$$\hat{\alpha} = \arg\min_{\alpha} \frac{1}{n} ||\alpha^T \mathbf{K} - \mathbf{y}||_2^2 + \lambda \alpha^T \mathbf{K} \alpha$$

Closed-form solution: $\hat{\alpha} = (\mathbf{K} + n\lambda \mathbf{I})^{-1}\mathbf{y}$

Prediction: For data point x predict response y as

$$\hat{y} = \sum_{i=1}^{n} \hat{\alpha}_i k(\mathbf{x}_i, \mathbf{x})$$

Demo: Kernelized linear regression

KLR for the linear kernel

• What if
$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$
 ?

Application: semi-parametric regression

- Often, parametric models are too "rigid", and nonparametric models fail to extrapolate
- Solution: Use additive combination of linear and nonlinear kernel function

$$k(\mathbf{x}, \mathbf{x}') = c_1 \exp(||\mathbf{x} - \mathbf{x}'||_2^2 / h^2) + c_2 \mathbf{x}^T \mathbf{x}'$$

Demo: Semi-parametric KLR

Example fits

Application: Designing P450s chimeras [with Phil Romero, Frances Arnold PNAS'13]

Design space

Protein Fitness Landscape

Application: Protein Engineering [with Romero, Arnold, PNAS '13]

Wet-lab results [w Romero, Arnold PNAS '13]

- Identification of new thermostable P450s chimera
- 5.3C more stable than best published sequence!

Choosing kernels

For a given kernel, how should we choose parameters?

Cross-validation! ③

- How should we select suitable kernels?
 - Domain knowledge (dependent on data type)
 - «Brute force» (or heuristic) search
 - Use cross-validation

Learning kernels

 Much research on automatically selecting good kernels (Multiple Kernel Learning; Hyperkernels; etc.)

Parameter demo

What about overfitting?

- Kernels map to (very) high-dimensional spaces.
- Why do we hope to be able to learn?

• First attempt of an answer:

(typically) # parameters << # dimensions. Why?

 Number of parameters = number of data points ("non-parametric learning")

What about overfitting?

- Kernels map to (very) high-dimensional spaces.
- Why do we hope to be able to learn?
- Second attempt of an answer:
- Overfitting can of course happen (if we choose poor parameters)
- Can combat overfitting by regularization
 - This is already built into kernelized linear regression (and SVMs), but not the kernelized Perceptron

KLR:
$$\hat{\alpha} = \arg \min_{\alpha} \frac{1}{n} || \alpha^T \mathbf{K} - \mathbf{y} ||_2^2 + \lambda \alpha^T \mathbf{K} \alpha$$

SVM: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i \alpha^T \mathbf{k}_i\} + \lambda \alpha^T \mathbf{D}_{\mathbf{y}} \mathbf{K} \mathbf{D}_{\mathbf{y}} \alpha$

What you need to know

- Kernels are
 - (efficient, implicit) inner products
 - Positive (semi-)definite functions
 - Many examples (linear, polynomial, Gaussian/RBF, ...)
- The "Kernel trick"
 - Reformulate learning algorithm so that inner products appear
 - Replace inner products by kernels
- K-Nearest Neighbor classifier (and relation to Perceptron)
- How to choose kernels (kernel engineering etc.)
- Applications: Kernelized Perceptron / SVM; kernelized linear regression
Supervised learning big picture so far k-NN Kernelized **Kernelized SVM** Regression ternels Ridge Linear Loss funct. Regression **SVM Kernelized** regularize **I1-SVM** 2-regularize Lasso Perceptron 3 Loss funct. Least squares Loss funct. Perceptron Regression

Supervised learning summary so far

Representation/ features	Linear hypotheses; nonlinear hypotheses with nonlinear feature transforms; kernels
Model/ objective:	Loss-function+RegularizationSquared loss, 0/1 loss, Perceptron loss, Hinge lossL2 norm, L1 norm
Method:	Exact solution, Gradient Descent, (mini-batch) SGD, Convex Programming,
Evaluation metric:	Mean squared error, Accuracy

Model selection: K-fold Cross-Validation, Monte Carlo CV