Problem 1 (SVM):
This exercise is based on an exercise designed by Stephanie Hyland. In its original formulation, the perceptron aims to minimise a 0/1-loss function (shown below, solid). Because this objective is neither convex nor differentiable, a surrogate loss function is optimised (typically, $l_p(w; x, y) = \max(0, -y w^T x)$, dashed). In this exercise, we consider a different surrogate loss function l_s, which approximates the 0/1-loss function more closely.

$$
l_s(w; x, y) = \begin{cases}
0, & \text{for } \operatorname{sign}(w^T x) = y \\
\sqrt{-y w^T x}, & \text{for } \operatorname{sign}(w^T x) \neq y
\end{cases}
$$

1. Mark the following statements as True or False. Try to justify the answer for yourself.
 (a) l_p is convex.
 (b) l_p is differentiable.
 (c) l_s is convex.
 (d) l_s is differentiable.
Solution:
Only (a) is True.

(a) \(l_p\), known as the hinge loss, is convex because it is the maximum of two linear functions, and:

i. Any linear function is convex.

ii. The maximum of two convex functions is convex.

(b) Let’s differentiate with respect to \(yw^Tx\). If \(\text{sign}(w^Tx) = y, l'_p(w; x, y) = 0\). If \(\text{sign}(w^Tx) \neq y\),
\[l'_p(w; x, y) = -1.\]
To check differentiability, we need to check the limit at point 0. \(\lim_{x \to 0} l'_p = -1\). \(l_p\) is not differentiable at \(yw^Tx = 0\), since the left and right derivatives are not equal.

(c) \(l_s\) is not convex.

To check whether \(l_s\) is convex, we can look at \(f(x) = \sqrt{x}\).
A way to show that \(f(x) = \sqrt{x}\) is not convex is to show that \(-f(x)\) is convex.
\[
\sqrt{tx_1 + (1-t)x_2} > t\sqrt{x_1} + (1-t)\sqrt{x_2}
\]
\[
tx_1 + (1-t)x_2 > t^2x_1 + (1-t)^2x_2 + t(1-t)\sqrt{x_1x_2}
\]
\[
x_1 + x_2 > 2\sqrt{x_1x_2}
\]
\[
(\sqrt{x_1} - \sqrt{x_2})^2 > 0
\]
Hence, \(f(x) = \sqrt{x}\) is concave and so is \(l_s\).

(d) Let’s differentiate with respect to \(yw^Tx\). If \(\text{sign}(w^Tx) = y, l'_s(w; x, y) = 0\). If \(\text{sign}(w^Tx) \neq y\),
\[l'_s(w; x, y) = \frac{1}{2}(-yw^Tx)^{\frac{3}{2}}(-1) = \frac{1}{2\sqrt{-yw^Tx}}.\]
To check differentiability, we need to check the limit at point 0. Let \(z = yw^Tx\). Then, \(\lim_{x \to 0} -\frac{1}{\sqrt{z}} = -\infty\). Hence, \(l_s\) is not differentiable at \(yw^Tx = 0\).

2. Derive \(\nabla l_s(w, x, y)\).

\[
(a) \begin{cases}
0, & \text{if } y = \text{sign}(w^Tx) \\
-\frac{ux}{2\sqrt{-yw^Tx}}, & \text{if } y \neq \text{sign}(w^Tx)
\end{cases}
\]

\[
(b) \begin{cases}
0, & \text{if } y = \text{sign}(w^Tx) \\
-\frac{uy}{2\sqrt{yw^Tx}}, & \text{if } y \neq \text{sign}(w^Tx)
\end{cases}
\]

\[
(c) \begin{cases}
0, & \text{if } y = \text{sign}(w^Tx) \\
\frac{uy}{2\sqrt{-yw^Tx}}, & \text{if } y \neq \text{sign}(w^Tx)
\end{cases}
\]

\[
(d) \begin{cases}
0, & \text{if } y = \text{sign}(w^Tx) \\
\frac{ux}{2\sqrt{yw^Tx}}, & \text{if } y \neq \text{sign}(w^Tx)
\end{cases}
\]

Solution:
The correct answer is (a).
Although \(l_s\) not differentiable at \(yw^Tx = 0\), the subgradient exists and hence (stochastic) gradient descent converges. To derive the subgradient let’s rewrite the function \(l_s\) as \(l_s(w; x, y) = \max(0, -\sqrt{yw^Tx})\). Now let \(f(z) = \max(0, -\sqrt{z}) \text{ and } g(w) = w^Tx\). We use the chain rule
\[
\frac{\partial}{\partial w_i} f(g(w)) = \frac{\partial f}{\partial z} \frac{\partial g}{\partial w_i}
\]
We get
\[
\frac{\partial f}{\partial z} = \begin{cases}
0, & \text{for sign}(z) = y \\
\frac{y}{2 \sqrt{y^2 - yz}}, & \text{for sign}(z) \neq y
\end{cases}
\]
and \(\frac{\partial g}{\partial w_i} = x_i\). Hence,
\[
\frac{\partial f}{\partial w_i} (g(w)) = \begin{cases}
0, & \text{for sign}(z) = y \\
\frac{-yx}{2\sqrt{-yz}}, & \text{for sign}(z) \neq y
\end{cases}
\]

3. The exercise suggests to train an SVM, where we penalise the margin violation given by \((1 - yw^Tx)_+ = \max(1 - yw^Tx, 0)\), not linearly but with the square root instead. Correspondingly, our modified SVM seeks to optimise the following objective
\[
L(w) = \frac{1}{n} \sum_{i=1}^{n} \sqrt{(1 - y_w^T x_i)} + \lambda \|w\|^2
\]

Pick the correct update step for stochastic gradient descent.

(a) Pick \(i_t \sim Unif(1, 2, \ldots, n)\).
If \(y_i w^T x_i < 1\)
\[
w_{t+1} = w_t (1 - \eta t 2\lambda) + \eta_t \frac{y_i x_i}{2 \sqrt{(1 - y_i w^T x_i)}}
\]
Else
\[
w_{t+1} = w_t (1 - \eta t 2\lambda)
\]

(b) Pick \(i_t \sim Unif(1, 2, \ldots, n)\).
If \(y_i w^T x_i < 1\)
\[
w_{t+1} = w_t (1 - \eta t 2\lambda)
\]
Else
\[
w_{t+1} = w_t (1 - \eta t 2\lambda) + \eta_t \frac{y_i x_i}{2 \sqrt{(1 - y_i w^T x_i)}}
\]

(c) Pick \(i_t \sim Unif(1, 2, \ldots, n)\).
If \(y_i w^T x_i < 1\)
\[
w_{t+1} = w_t (1 + \eta t 2\lambda) + \eta_t \frac{y_i x_i}{2 \sqrt{(1 - y_i w^T x_i)}}
\]
Else
\[
w_{t+1} = w_t (1 + \eta t 2\lambda)
\]

(d) Pick \(i_t \sim Unif(1, 2, \ldots, n)\).
If \(y_i w^T x_i < 1\)
\[
w_{t+1} = w_t (1 + \eta t 2\lambda)
\]
Else
\[
w_{t+1} = w_t (1 + \eta t 2\lambda) + \eta_t \frac{y_i x_i}{2 \sqrt{(1 - y_i w^T x_i)}}
\]

Solution:
The correct answer is (a).
For \(y_i w^T x_i < 1\),
\[
\nabla_w L = -\frac{y_i x_i}{2 \sqrt{(1 - y_i w^T x_i)}} + 2\lambda w_t
\]
Else,
\[
\nabla_w L = 2\lambda w_t
\]
Why may this modification not be a good idea? You can see that the weight update due to margin violations gets rescaled as a result of the modification by the factor \(\frac{1}{2\sqrt{1-\gamma_{ij}w^T x_i}} \). This factor is small when the margin violation is large and large when the margin violation is small, which may make training this modified SVM troublesome.

Problem 2 (Kernels):

Use the basic rules for kernel decomposition discussed in class or otherwise and assuming that \(k(x,y) \) is a valid kernel, letting \(f : \mathbb{R} \rightarrow \mathbb{R} \) in a) and b), \(g : \mathcal{X} \rightarrow \mathbb{R}_+ \) for d), \(f : \mathcal{X} \rightarrow \mathbb{R} \) for e) and f), and \(\phi : \mathcal{X} \rightarrow \mathcal{X}' \).

4. Mark the following statements as True or False. Try to justify your answers to yourself.

(a) \(k_a(x,y) = f(k(x,y)) \) is a valid kernel, if \(f \) is a polynomial with non-negative coefficients.

(b) \(k_b(x,y) = f(k(x,y)) \) is a valid kernel, if \(f \) is any polynomial.

(c) \(k_c(x,y) = \exp(k(x,y)) \) is a valid kernel.

(d) \(k_d(x,y) = g(x)k(x,y)g(y) \) is a valid kernel.

(e) \(k_e(x,y) = f(x)k(x,y)f(y) \) is a valid kernel.

(f) \(k_f(x,y) = k(\phi(x),\phi(y)) \) is a valid kernel.

Solution:

(a), (c), (d), (e) and (f) are True.

(a) Since each polynomial term is a product of kernels with non-negative coefficients, the proof follows from the rules of addition and multiplication yielding valid kernels.

(b) Product of kernels with negative coefficients is not necessarily a valid kernel.

(c) We can use the Taylor expansion around 0:

\[
\exp(k(x,y)) = \exp(0) + \frac{\exp(0)k(x,y) + \frac{\exp(0)}{2!}(k(x,y))^2}{2} + \ldots
\]

\[
= 1 + k(x,y) + \frac{1}{2}(k(x,y))^2 + \frac{1}{6}(k(x,y))^3 + \ldots
\]

(d) and (e) Since \(k(x,y) \) is a valid kernel, we can define a feature map \(\phi(\cdot) \), such that \(k(x,y) = \langle \phi(x),\phi(y) \rangle \). Now,

\[
k_e(x,y) = f(x)k(x,y)f(y) = f(y)f(x)\phi(x),\phi(y)) = f(y)\langle f(x)\phi(x),\phi(y) \rangle = \langle f(x)\phi(x),f(y)\phi(y) \rangle
\]

Hence, with the new feature map \(\phi(\cdot) = f(\cdot)\phi(\cdot) \), \(k_e(x,y) \) is a valid kernel (symmetry and positive definiteness properties don’t change). This is a solution for (e). (d) follows from this, as it a specific case of the same.

(f) We know that \(k(x,y) \) is a valid kernel and hence, on any set of vectors (also transformed ones) it yields a valid kernel.

5. For \(x, x' \in \mathbb{R}^d \), and \(K(x, x') = (x^T x' + 1)^2 \), identify possible feature maps \(\phi(x) \), such that \(k(x, x') = \phi(x)^T \phi(x') \). Let \(x^T = (x_1, \ldots, x_d) \).

(a) \((1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1x_1, x_1x_2, \ldots, x_i x_j, \ldots) \)

(b) \((1 + x_1, \ldots, 1 + x_i, \ldots, 1 + x_d) \)
6. For the dataset \(X \) and (c) are correct answers.

\[x^T \phi(x) + 1 \]

(a) \((1, \sqrt{2}x_1, ..., \sqrt{2}x_d, -x_1x_1, ... -x_i x_j, -x_i x_j) \)

(b) \(\frac{1}{\sqrt{2}} (x_1, ..., x_i x_j, x_1 x_j, ..., x_i x_j) \)

Solution:
(a) and (c) are correct answers.

\[
(x^T \cdot x' + 1)^2 = (\Sigma^i x_i x'_i + 1)^2 = 1 + 2\Sigma^i x_i x'_i + \Sigma^i \Sigma^j (x_i x_j)(x'_i x'_j)
\]

(a) \((1, \sqrt{2}x_1, ..., \sqrt{2}x_d, x_1 x_1, x_1 x_2, ..., x_i x_j, x_i x_j) \)

(b) \((1 + x_1, ..., 1 + x_i, ..., 1 + x_j)^T \)

(c) \((1 + x_1, ..., 1 + x_i, ..., 1 + x_j)^T \)

(d) \((1 + x_1, ..., 1 + x_i, ..., 1 + x_j)^T \)

For the dataset \(X = \{x_i\}_{i=1,2} = \{(-3, 4), (1, 0)\} \) and the feature map \(\phi(x) = [x^{(1)}, x^{(2)}, \|x\|] \), calculate the Gram matrix (for a vector \(x \in \mathbb{R}^2 \) we denote by \(x^{(1)}, x^{(2)} \) its components).

(a) \(\begin{pmatrix} 50 & 2 \\ 2 & 2 \end{pmatrix} \)

(b) \(\begin{pmatrix} 50 & 4 \\ 4 & 4 \end{pmatrix} \)

(c) \(\begin{pmatrix} -50 & 2 \\ 2 & 2 \end{pmatrix} \)

(d) \(\begin{pmatrix} 50 & 2 \\ 4 & 4 \end{pmatrix} \)

Solution:
The correct answer is (a).

First, we get \(\phi(x) \) for each \(x \).

(a) \(\phi([-3, 4]) = (-3, 4, 5) \)

(b) \(\phi([1, 0]) = (1, 0, 1) \)

Now we get the inner products:

(a) \(\phi([-3, 4])^T \phi([-3, 4]) = 50 \)

(b) \(\phi([-3, 4])^T \phi([1, 0]) = 2 \)

(c) \(\phi([1, 0])^T \phi([1, 0]) = 2 \)

And now the Gram matrix \(\phi \) is simply given by \(\phi_{i,j} = \phi(x_i)^T \phi(x_j) \); using the above:

\[
\begin{pmatrix} 50 & 2 \\ 2 & 2 \end{pmatrix}
\]