
Institute for Machine Learning

Dept. of Computer Science, ETH Zürich
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(Kernel)

Problem 1 (SVM):

This exercise is based on an exercise designed by Stephanie Hyland. In its original formulation, the perceptron aims
to minimise a 0/1-loss function (shown below, solid). Because this objective is neither convex nor differentiable,
a surrogate loss function is optimised (typically, lp(w;x, y) = max(0,−ywTx), dashed). In this exercise, we
consider a different surrogate loss function ls, which approximates the 0/1-loss function more closely.

ls(w;x, y) =

{
0, for sign(wTx) = y√
−ywTx, for sign(wTx) 6= y
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1. Mark the following statements as True or False. Try to justify the answer for yourself.

(a) lp is convex.

(b) lp is differentiable.

(c) ls is convex.

(d) ls is differentiable.



Solution:
Only (a) is True.

(a) lp, known as the hinge loss, is convex because it is the maximum of two linear functions, and:

i. Any linear function is convex.

ii. The maximum of two convex functions is convex.

(b) Let’s differentiate with respect to ywTx. If sign(wTx) = y, l
′

p(w;x, y) = 0. If sign(wTx) 6= y,

l
′

p(w;x, y) = −1.

To check differentiability, we need to check the limit at point 0. limx→0− l
′

p = −1. lp is not

differentiable at ywTx = 0, since the left and right derivatives are not equal.

(c) ls is not convex.
To check whether ls is convex, we can look at f(x) =

√
x.

A way to show that f(x) =
√

(x) is not convex is to show that −f(x) is convex.√
tx1 + (1− t)x2 > t

√
x1 + (1− t)√x2

tx1 + (1− t)x2 > t2x1 + (1− t)2x2 + t1(1− t)√x1x2
x1 + x2 > 2

√
x1x2

(
√
x1 −

√
x2)2 > 0

Hence, f(x) =
√
x is concave and so is ls.

(d) Let’s differentiate with respect to ywTx. If sign(wTx) = y, l
′

s(w;x, y) = 0. If sign(wTx) 6= y,

l
′

s(w;x, y) = 1
2 (−ywTx)

1
2 (−1) = 1

2
√
−yywTx

.

To check differentiability, we need to check the limit at point 0. Let z = ywTx. Then, limx→0− − 1√
z

=

−∞. Hence, ls is not differentiable at ywTx = 0.

2. Derive ∇ls(w, x, y).

(a)

{
0, if y = sign(wTx)

− yx

2
√
−ywTx

, if y 6= sign(wTx)

(b)

{
0, if y = sign(wTx)

− yx

2
√

ywTx
, if y 6= sign(wTx)

(c)

{
0, if y = sign(wTx)

yx

2
√
−ywTx

, if y 6= sign(wTx)

(d)

{
0, if y = sign(wTx)

yx

2
√

ywTx
, if y 6= sign(wTx)

Solution:
The correct answer is (a).
Although ls not differentiable at ywTx = 0, the subgradient exists and hence (stochastic) gradient descent

converges. To derive the subgradient let’s rewrite the function ls as ls(w;x, y) = max(0,
√
−ywTx). Now

let f(z) = max(0,−√yz)andg(w) = wTx. We use the chain rule

∂

∂wi
f(g(w)) =

∂f

∂z

∂g

∂wi
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. We get

∂f

∂z
=

{
0, for sign(z) = y

− y
2
√
−yz , for sign(z) 6= y

and ∂g
∂wi

= xi. Hence,

∂f(g(w))

∂wi
=

{
0, for sign(z) = y

− yx

2
√
−ywTx

, for sign(z) 6= y

3. The exercise suggests to train an SVM, where we penalise the margin violation given by (1 − ywTx)+ =
max(1−ywTx, 0), not linearly but with the square root instead. Correspondingly, our modified SVM seeks
to optimise the following objective

L(w) =
1

n
Σn

i=1

√
(1− ywTx)+ + λ‖w‖2

.

Pick the correct update step for stochastic gradient descent.

(a) Pick it ∼ Unif(1, 2, ...n).
If yitw

T
t xit < 1

wt+1 = wt(1− ηt2λwt) + ηt
yixi

2
√

(1−yiwTxi)

Else
wt+1 = wt(1− ηt2λwt)

(b) Pick it ∼ Unif(1, 2, ...n).
If yitw

T
t xit < 1

wt+1 = wt(1− ηt2λwt)
Else
wt+1 = wt(1− ηt2λwt) + ηt

yixi

2
√

(1−yiwTxi)

(c) Pick it ∼ Unif(1, 2, ...n).
If yitw

T
t xit < 1

wt+1 = wt(1 + ηt2λwt) + ηt
yixi

2
√

(1−yiwTxi)

Else
wt+1 = wt(1 + ηt2λwt)

(d) Pick it ∼ Unif(1, 2, ...n).
If yitw

T
t xit < 1

wt+1 = wt(1 + ηt2λwt)
Else
wt+1 = wt(1 + ηt2λwt) + ηt

yixi

2
√

(1−yiwTxi)

Solution:
The correct answer is (a).
For yitw

T
t xit < 1,

∇wL = − yixi

2
√

(1− yiwTxi)
+ 2λwt

Else,
∇wL = 2λwt
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Why may this modification not be a good idea? You can see that the weight update due to margin violations
getsrescaled as a result of the modification by the factor 1

2
√

1−yiwTxi

. This factor is small when the margin

violation is large and large when the margin violation is small, which may make training this modified SVM
troublesome.

Problem 2 (Kernels):

Use the basic rules for kernel decomposition discussed in class or otherwise and assuming that k(x, y) is a valid
kernel, letting f : R→ R in a) and b), g : X → R+ for d), f : X → R for e) and f), and φ : X → X ′.

4. Mark the following statements as True or False. Try to justify your answers to yourself.

(a) ka(x, y) = f(k(x, y)) is a valid kernel, if f is a polynomial with non-negative coefficients.

(b) kb(x, y) = f(k(x, y)) is a valid kernel, if f is any polynomial.

(c) kc(x, y) = exp(k(x, y)) is a valid kernel.

(d) kd(x, y) = g(x)k(x, y)g(y) is a valid kernel.

(e) ke(x, y) = f(x)k(x, y)f(y) is a valid kernel.

(f) kf (x, y) = k(φ(x), φ(y)) is a valid kernel.

Solution:
(a), (c), (d), (e) and (f) are True.

(a) Since each polynomial term is a product of kernels with non-negative coefficients, the proof follows
from the rules of addition and multiplication yielding valid kernels.

(b) Product of kernels with negative coefficients is not necessarily a valid kernel.

(c) We can use the Taylor expansion around 0:

exp(k(x, y)) = exp(0) + exp(0)k(x, y) +
exp(0)

2!
(k(x, y))2 + ...

= 1 + k(x, y) +
1

2
(k(x, y))2 +

1

6
(k(x, y))3...

(d) and (e) Since k(x, y) is a valid kernel, we can define a feature map φ(.), such that k(x, y) =
〈φ(x), φ(y)〉.
Now,

ke(x, y) = f(x)k(x, y)f(y) = f(y)f(x)〈φ(x), φ(y)〉 = f(y)〈f(x)φ(x), φ(y)〉 = 〈f(x)φ(x), f(y)φ(y)〉

Hence, with the new feature map φe(.) = f(.)φ(.), ke(x, y) is a valid kernel (symmetry and positive
definiteness properties don’t change). This is a solution for (e). (d) follows from this, as it a specific
case of the same.

(f) We know that k(x, y) is a valid kernel and hence, on any set of vectors (also transformed ones) it
yields a valid kernel.

5. For x,x′ ∈ Rd, and K(x,x′) = (xTx′ + 1)2, identify possible feature maps φ(x), such that k(x,x′) =
φ(x)>φ(x′). Let xT = (xi, ..., xd).

(a) (1,
√

2x1, ...,
√

2xd, x1x1, x1x2, ...xixj ...)

(b) (1 + x1, ...1 + xi, ...1 + xd)

4



(c) (1,−
√

2x1, ...,−
√

2xd,−x1x1,−x1x2, ...− xixj ...)
(d) (1, 1√

2
x1, ...,

1√
2
xd, x1x1, x1x2, ...xixj ...,

1√
2
x1, ...,

1√
2
xd)

Solution:
(a) and (c) are correct answers.

(xTx′ + 1)2 = (Σixix
′

i + 1)2 = 1 + 2Σixix
′

i + ΣiΣj(xixj)(x
′

ix
′

j)

(a) (1,
√

2x1, ...,
√

2xd, x1x1, x1x2, ...xixj ...)
T (1,
√

2x1, ...,
√

2xd, x1x1, x1x2, ...xixj ...)

= 1 + 2Σixix
′

i + ΣiΣj(xixj)(x
′

ix
′

j).

(b) (1 + x1, ...1 + xi, ...1 + xd)T (1 + x1, ...1 + xi, ...1 + xd)
= Σi(1 + xi)

2 = Σi(1 + 2xi + x2i ) 6= 1 + 2Σixix
′

i + ΣiΣj(xixj)(x
′

ix
′

j).

(c) (1,−
√

2x1, ...,−
√

2xd,−x1x1,−x1x2, ...−xixj ...)T (1,−
√

2x1, ...,−
√

2xd,−x1x1,−x1x2, ...−xixj ...) =

1 + 2Σixix
′

i + ΣiΣj(xixj)(x
′

ix
′

j).

(d) (1, 1√
2
x1, ...,

1√
2
xd, x1x1, ...xixj ...,

1√
2
x1, ...,

1√
2
xd)T (1, 1√

2
x1, ...,

1√
2
xd, x1x1, ...xixj ...,

1√
2
x1, ...,

1√
2
xd) =

1+2Σi
1
2xix

′

i+ΣiΣj(xixj)(x
′

ix
′

j) = 1+Σixix
′

i+ΣiΣj(xixj)(x
′

ix
′

j) 6= 1+2Σixix
′

i+ΣiΣj(xixj)(x
′

ix
′

j)

6. For the dataset X = {xi}i=1,2 = {(−3, 4), (1, 0)} and the feature map φ(x) = [x(1), x(2), ‖x‖], calculate
the Gram matrix (for a vector x ∈ R2 we denote by x(1), x(2) its components).

(a)

(
50 2
2 2

)
(b)

(
50 4
4 4

)
(c)

(
−50 2

2 2

)
(d)

(
50 2
4 4

)
Solution:
The correct answer is (a).
First, we get φ(x) for each x.

(a) φ([−3, 4]) = (−3, 4, 5)

(b) φ([1, 0]) = (1, 0, 1)

Now we get the inner products:

(a) φ([−3, 4])Tφ([−3, 4]) = 50

(b) φ([−3, 4])Tφ([1, 0]) = 2

(c) φ([1, 0])Tφ([1, 0]) = 2

And now the Gram matrix φ is simply given by φi,j = φ(xi)
Tφ(xj); using the above:(

50 2
2 2

)
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