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Problem 1 (SVM):

This exercise is based on an exercise designed by Stephanie Hyland. In its original formulation, the perceptron aims
to minimise a 0/1-loss function (shown below, solid). Because this objective is neither convex nor differentiable,
a surrogate loss function is optimised (typically, I,(w;x,y) = max(0, —yw’x), dashed). In this exercise, we
consider a different surrogate loss function I, which approximates the 0/1-loss function more closely.
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1. Mark the following statements as True or False. Try to justify the answer for yourself.

(a) 1, is convex.
(b) 1
(c) Is is convex.
(d) 1

p is differentiable.

< is differentiable.



Solution:
Only (a) is True.

(a) I,, known as the hinge loss, is convex because it is the maximum of two linear functions, and:

i. Any linear function is convex.

ii. The maximum of two convex functions is convex.

Tx) =y, L (w;x,y) = 0. If sign(wTx) # y,

(b) Let's differentiate with respect to ywTx. If sign(w
L (w;x,y) = —1. /
To check differentiability, we need to check the limit at point 0. lim,,o_[l, = —1. [, is not
differentiable at yw”x = 0, since the left and right derivatives are not equal.

(c) s is not convex.
To check whether Is is convex, we can look at f(z) = /.
A way to show that f(z) = /() is not convex is to show that —f(z) is convex.

Ve + (1 =ty > ty/a + (1 - 1)z
tey 4+ (1 — t)xg > 22 + (1 — t)%29 + t1(1 — )\ /7172
1+ 22 > 2\/x 122
(Va1 — V72)* > 0

Hence, f(z) = \/x is concave and so is I;.

T

(d) Let's differentiate with respect to ywTx. If sign(wTx) = y,l;(w;x, y) = 0. If sign(wTx) # v,

l;(W§X,y) = %(—yWTX)%(—l) = Wﬁ

To check differentiability, we need to check the limit at point 0. Let z = yw’x. Then, lim,_,q_ —% =

—o0. Hence, I, is not differentiable at yw’'x = 0.

2. Derive Vis(w,z,y).

0, if y = sign(w’'x)
(@) — = iy # sign(w’a)
(b) {O, if y = sign(w’'r)
___y= i i T
W if y # sign(w!z)
0, if y = sign(w’x)
0, if y = sign(w’'z)
(d) 5 = ify# sign(wT x)
ywTx
Solution:

The correct answer is (a).
Although I, not differentiable at yw’x = 0, the subgradient exists and hence (stochastic) gradient descent

converges. To derive the subgradient let's rewrite the function I as ls(w;x,y) = maz(0, y/—ywTx). Now
let f(z) = max(0, —\/yz)andg(w) = wlx. We use the chain rule

0 of dg
50,79 = 57 5




. We get

of {O, for sign(z) =y
0z —2\/{?, for sign(z) # y
and aaTgi = z;. Hence,
df(g(w)) {0, for sign(z) =y
Tow i forsien(z) £y

. The exercise suggests to train an SVM, where we penalise the margin violation given by (1 — yw'x), =
max(1—yw?Tx,0), not linearly but with the square root instead. Correspondingly, our modified SVM seeks
to optimise the following objective

1 e
L(w) = ~%iiy/ (1 —yw'x)4 + Allwlf?

Pick the correct update step for stochastic gradient descent.

(a) Pick iy ~Unif(1,2,...n).
If yiwExe < 1
w1 = w(1 — 2Awy) + nt?\/ﬁ
Else
w1 = wi(1 — N 2Awy)

(b) Pick iz ~ Unif(1,2,...n).
If yiwExse < 1
Wi1 = U}t(l — 77t2)\wt)
Else

Wit = wo(1 = n2AW) s

(c) Pick iy ~Unif(1,2,...n).
If yitWExit <1
Else

Wi1 = U)t(l -+ nt2>\wt)

(d) Pick iz ~ Unif(1,2,...n).
If yitw,:rxit <1
Wi1 = wt(l —+ nt2)\wt)
Else
w1 = w1+ n2Awy) + Ul YiXi

vV (=yiwTx;)

Solution:
The correct answer is (a).
For yiwg x; < 1,

YiXi
2/(1 - yiwTx;)

+ 2/\Wt

Else,
va = 2)\Wt



Why may this modification not be a good idea? You can see that the weight update due to margin violations

getsrescaled as a result of the modification by the factor 5

1

V1-y;wTx;

. This factor is small when the margin

violation is large and large when the margin violation is small, which may make training this modified SVM
troublesome.

Problem 2 (Kernels):

Use the basic rules for kernel decomposition discussed in class or otherwise and assuming that k(x,y) is a valid
kernel, letting f : R — Rin a) and b), g: X - R, ford), f: X = R for e) and f), and ¢ : X — X".

4. Mark the following statements as True or False. Try to justify your answers to yourself.

(a) ko(z,y) = f(k(z,y)) is a valid kernel, if f is a polynomial with non-negative coefficients.
(b) kp(z,y) = f(k(x,y)) is a valid kernel, if f is any polynomial.

(c) ke(z,y) = exp(k(z,y)) is a valid kernel.

(d) ka(z,y) = g(x)k(z,y)g(y) is a valid kernel.

(e) ke(z,y) = f(x)k(z,y)f(y) is a valid kernel.

(f) kr(z,y) = k(é(x), ¢(y)) is a valid kernel.
Solution:

(a), (c), (d), (e) and (f) are True.

()

(b)
(c)

(d)

(f)

Since each polynomial term is a product of kernels with non-negative coefficients, the proof follows
from the rules of addition and multiplication yielding valid kernels.

Product of kernels with negative coefficients is not necessarily a valid kernel.

We can use the Taylor expansion around 0:

6“2)!(0) (e(z, ) + ...

%(k(ax, y)3...

exp(k(z,y)) = exp(0) + exp(0)k(z,y) +

=1+k(z,y) + %(k(l‘ay))Q +

and (e) Since k(x, y) is a valid kernel, we can define a feature map ¢(.), such that k(z,y) =
(0(x), ¢(y))-
Now,

ke(z,y) = f(2)k(z,y) f(y) = f(y) f(@)(d(z), o(y)) = fF(W)(f(@)o(2), 9(y)) = (f(z)p(), f(y)P(v))

Hence, with the new feature map ¢.(.) = f(.)#(.), ke(z,y) is a valid kernel (symmetry and positive
definiteness properties don't change). This is a solution for (e). (d) follows from this, as it a specific
case of the same.

We know that k(z,y) is a valid kernel and hence, on any set of vectors (also transformed ones) it
yields a valid kernel.

5. For x,x’ € RY, and K(x,x') = (xTx’ + 1)?, identify possible feature maps ¢(x), such that k(x,x’) =
d(x)To(x'). Let xT = (4, ..., z4).

(a)
(b)

(1,v2x1, ..., V224, 2121, T1 22, T )
(I+z,... 14z, 1+ 24)



(c) (1,=V2x1,...,—\ 224, —x 121, —2120, ... — ;...

1 1 1 1
(d) (1, 5Ly e 5Ty TITL, L1T 2, o Ty 5T, o ﬁzd)

Solution:
(a) and (c) are correct answers.

/

xTx' +1)% = (Sjzez, + 1) = 1 4 25252, + P (sclxj)(a?;xj)

(@) (1,v2z1, ...,V 224, 1121, 2122, iz )T (1, V221, .22, T1201, X122, T T )
= 14282z, + PRI (gclxj)(x;x;)

(b) (1 + 2y, .14z 1 +ag)T (14 21,...1 + 24, w1+ ) o
= El‘(l + $i)2 = El(l + 21}7; + :vf) 75 1+ 2213?11'2 + ZZEJ(&EZJJJ)({ELL' )

i

(c) (1,—\/§$1,...,—\/El‘d,—l‘l.’lﬁl,—xl.’lig,...—xil‘j...)T(l,—\/iﬂfl,...,—\/§$d,—.%11}1,—3311‘2,...—.’131'.’1,‘]‘...) =
1+ 221’*751'331 + EiZj (mixj)(mixj).
(d) (1, %xl, ey %xd, TIX1, T T, %wl, ey %xd)T(l, %xl, ey %xd,xlxl, DTy %xl, ey %xd)

6. For the dataset X = {x;}i—12 = {(—3,4),(1,0)} and the feature map ¢(x) = [z(V), 2(?) ||x]|], calculate

the Gram matrix (for a vector x € R? we denote by (1), 2(?) its components).
@ (3 3)
o (% 3)
0(7)
@ (% 3)
Solution:

The correct answer is (a).
First, we get ¢(x) for each x.

(@) o([=3,4]) = (=3,4,5)
(b) ¢([1,0]) = (1,0,1)

Now we get the inner products:
(a) o([=3,4])"¢([-3,4]) = 50
(b) &([=3,4])7¢([1,0]) =2
(c) o([1,0))T([1,0]) =2

And now the Gram matrix ¢ is simply given by ¢; ; = ¢(z;)” ¢(z;); using the above:

(% 2)



