Problem 1 (Mixture Models and Expectation-Maximization Algorithm):

Consider a one-dimensional Gaussian Mixture Model with 2 clusters and parameters \((\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1, w_2)\). Here \((w_1, w_2)\) are the mixing weights, and \((\mu_1, \sigma_1^2), (\mu_2, \sigma_2^2)\) are the centers and variances of the clusters. We are given a dataset \(D = \{x_1, x_2, x_3\} \subset \mathbb{R}\), and apply the EM-algorithm to find the parameters of the Gaussian mixture model.

1. What is the complete log-likelihood that is being optimized, for this problem?

(a) \(\ln f(D|\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1, w_2) = \ln \{w_1 N(x_1; \mu_1, \sigma_1) + w_2 N(x_2; \mu_2, \sigma_2)\} + \ln \{w_1 N(x_2; \mu_1, \sigma_1) + w_2 N(x_2; \mu_2, \sigma_2)\}\)

(b) \(\ln f(D|\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1, w_2) = \ln \{w_1 N(x_2; \mu_1, \sigma_1) - w_2 N(x_2; \mu_2, \sigma_2)\} + \ln \{w_1 N(x_2; \mu_1, \sigma_1) - w_2 N(x_2; \mu_2, \sigma_2)\}\)

(c) \(\ln f(D|\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1, w_2) = \ln \\left\{\frac{w_1}{w_1 + w_2}N(x_1; \mu_1, \sigma_1) + \frac{w_2}{w_1 + w_2}N(x_2; \mu_2, \sigma_2)\right\} + \ln \\left\{\frac{w_1}{w_1 + w_2}N(x_2; \mu_1, \sigma_1) + \frac{w_2}{w_1 + w_2}N(x_2; \mu_2, \sigma_2)\right\}\)

(d) \(\ln f(D|\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1, w_2) = \ln \\left\{\frac{w_1}{w_1 + w_2}N(x_1; \mu_1, \sigma_1) - \frac{w_2}{w_1 + w_2}N(x_2; \mu_2, \sigma_2)\right\} + \ln \\left\{\frac{w_1}{w_1 + w_2}N(x_1; \mu_1, \sigma_1) - \frac{w_2}{w_1 + w_2}N(x_2; \mu_2, \sigma_2)\right\}\)

Solution:
The correct answers are (a) and (c).

Assume that the dataset \(D\) consists of the following three points, \(x_1 = 1, x_2 = 10, x_3 = 20\). At some step in the EM-algorithm, we compute the expectation step which results in the following matrix: \(R = \begin{pmatrix} 1 & 0 \\ 0.4 & 0.6 \\ 0 & 1 \end{pmatrix}\).

Where \(r_{ic}\) denotes the probability of \(x_i\) belonging to cluster \(c\).

Given the above \(R\) for the expectation step, write the result of the maximization step for the mixing weights \(w_1, w_2\). Round your answer to two decimal points.

2. \(w_1 = \text{Solution:} \quad w_1 = 0.47\)

3. \(w_2 = \text{Solution:} \quad w_2 = 0.53\)

Given the above \(R\) for the expectation step, write the result of the maximization step for the centers \(\mu_1, \mu_2\). Round your answer to two decimal points.
4. $\mu_1 = \text{Solution:}
\mu_1 = 3.57$

5. $\mu_2 = \text{Solution:}
\mu_2 = 16.25$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_k(x_n) x_n$$

where $N_k = \sum_{n=1}^{N} \gamma_k(x_n)$.

For this example,

$$\mu_1 = \frac{1}{1.4} (1 \cdot 1 + 0.4 \cdot 10 + 0 \cdot 20) = \frac{5}{1.4}$$

$$\mu_2 = \frac{1}{1.6} (0 \cdot 1 + 0.6 \cdot 10 + 1 \cdot 20) = \frac{26}{1.6}$$

Given the above R for the expectation step, write the result of the maximization step for the variance values σ_1^2, σ_2^2. Round your answer to two decimal points.

6. $\sigma_1^2 = \text{Solution:}
\sigma_1^2 = 16.53$

7. $\sigma_2^2 = \text{Solution:}
\sigma_2^2 = 23.44$

$$\sigma_k^2 = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_k(x_n) (x_n - \mu_k)^2$$

where $N_k = \sum_{n=1}^{N} \gamma_k(x_n)$.

For this example,

$$\mu_1 = \frac{1}{1.4} (1 \cdot (1 - \frac{5}{1.4})^2 + 0.4 \cdot (10 - \frac{5}{1.4})^2 + 0 \cdot (20 - \frac{5}{1.4})^2)$$

$$\mu_2 = \frac{1}{1.6} (0 \cdot (1 - \frac{26}{1.6})^2 + 0.6 \cdot (10 - \frac{26}{1.6})^2 + 1 \cdot (20 - \frac{26}{1.6})^2)$$

8. $\hat{\mu}_1 = \text{Solution:}
\hat{\mu}_1 = 1$

9. $\hat{\mu}_2 = \text{Solution:}
\hat{\mu}_2 = 15$

$$\hat{\mu}_1 = \frac{1}{1}(1) = 1$$

$$\hat{\mu}_2 = \frac{1}{2}(10 + 20) = 15$$

Problem 2 (Mixture Models and Maximum a Posteriori estimation):

We are given a dataset $D = \{x_1, ..., x_n\} \subset \mathbb{R}^d$. Consider a mixture of K multivariate Bernoulli distributions with parameters $\mu = (\mu_1, \mu_2, ..., \mu_K)$, where $\mu_k = \{\mu_{k1}, ..., \mu_{kd}\}$. You will use EM algorithm to compute MLE and MAP estimates.

10. What is the M step for μ_{ki} using MLE? Select the correct answer. Here, r_{nk} is the responsibility of the data point x_n belonging cluster center μ_k, as computed in the E step.
11. Now, suppose you want to do MAP estimation. What is the E step? Select the correct answer.

(a) $r_{nk} = \frac{\pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}{\sum_{k=1}^K \pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}$

(b) $r_{nk} = \frac{\pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}{\sum_{k=1}^K \pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}$

(c) $r_{nk} = \frac{\pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}{\sum_{k=1}^K \pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}$

(d) $r_{nk} = \frac{\pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}{\sum_{k=1}^K \pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}$

Solution:
The correct answer is (a).

The E step is the same for the MLE case, namely

$$r_{nk} = \frac{\pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}{\sum_{k=1}^K \pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}$$

12. What is the M step for μ_{ki} using MAP? You can assume a $Beta(\alpha, \beta)$ prior. Select the correct answer.

(a) $\mu_{ki} = \frac{\sum_{n=1}^N (r_{nk} x_{ni}) + \alpha - 1}{\sum_{n=1}^N (r_{nk} + \alpha + \beta - 2)}$

(b) $\mu_{ki} = \frac{\sum_{n=1}^N (r_{nk} x_{ni}) + \alpha}{\sum_{n=1}^N (r_{nk}) + \alpha + \beta - 1}$

(c) $\mu_{ki} = \frac{\sum_{n=1}^N (r_{nk} x_{ni}) + \alpha}{\sum_{n=1}^N (r_{nk}) + \alpha + \beta}$

(d) $\mu_{ki} = \frac{\sum_{n=1}^N (r_{nk} x_{ni}) + \beta}{\sum_{n=1}^N (r_{nk}) + \alpha + \beta}$

Solution:
The correct answer is (a).
According to Bayes’ theorem:

\[p(\theta | X) \propto p(X | \theta) p(\theta) \]

\[\log p(\theta | X) = \log p(X | \theta) + \log p(\theta) + c \]

where \(c \) is an arbitrary constant.

Therefore, we need to add a log prior to the expected value of the complete data log-likelihood. The function we need to maximize is \(\mathbb{E}[\log p(x, z | \pi, \mu)] + \log p(\mu) \), where \(p(\mu) = \prod_{k=1}^{K} \prod_{i=1}^{d} p(\mu_{ki}) \) and

\[p(\mu_{ki}) = \frac{\mu_{ki}^{\alpha - 1} (1 - \mu_{ki})^{\beta - 1}}{B(\alpha, \beta)} \]

We can write

\[\log p(\mu) = \sum_{k=1}^{K} \sum_{i=1}^{d} (\alpha - 1) \log \mu_{ki} + (\beta - 1)(1 - \log \mu_{ki}) - \log B(\alpha, \beta) \]

We take derivative of the following expression with respect to \(\mu_{ki} \) and set it to zero:

\[\sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \left(\log \pi_k + \sum_{i=1}^{d} (x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log (1 - \mu_{ki})) \right) + \sum_{k=1}^{K} \sum_{i=1}^{d} (\alpha - 1) \log \mu_{ki} + (\beta - 1) \log (1 - \mu_{ki}) \]

which gives

\[\mu_{ki} = \frac{\sum_{n=1}^{N} r_{nk} x_{ni} + \alpha - 1}{\sum_{n=1}^{N} r_{nk} + \alpha + \beta - 2} \]

Problem 3 (A Different Perspective on EM):

In this question you will show that EM can be seen as an iterative algorithm which maximizes a lower bound on the log-likelihood. We will treat any general model \(P(X, Z) \) with observed variables \(X \) and latent variable \(Z \). For the sake of simplicity, we will assume that \(Z \) is discrete and takes values in \(1, 2, ..., m \). If we observe \(X \), the goal is to maximize the log-likelihood

\[l(\theta) = \log P(x; \theta) = \log \sum_{z=1}^{m} P(x, z; \theta) \]

with respect to the parameter vector \(\theta \). \(Q(Z) \) denotes any distribution over the latent variables.

13. For \(Q(z) > 0 \) when \(P(x, z) > 0 \), find a lower bound for the likelihood, \(l(\theta) \). Hint: Consider using the Jensen’s inequality.

(a) \(\mathbb{E}_Q[\log P(X, Z)] - \sum_{z=1}^{m} Q(z) \log Q(z) \)

(b) \(\mathbb{E}_Q[\log P(X, Z)] + \sum_{z=1}^{m} Q(z) \log Q(z) \)

(c) \(\mathbb{E}_Q[\log P(X, Z)] \)

(d) \(\mathbb{E}_Q[\log P(X, Z)] + \sum_{z=1}^{m} Q(x) \log Q(x) \)

Solution:

The correct answer is (a).
\[l(\theta) = \log P(x; \theta) \]
\[= \log \sum_{z=1}^{m} P(x, z; \theta) \]
\[= \log \sum_{z=1}^{m} \frac{P(x, z; \theta)}{Q(z)} \cdot Q(z) \]
\[= \log \mathbb{E}_{Z \sim Q}[\frac{P(x, z; \theta)}{Q(z)}] \]
\[\geq \mathbb{E}_{Z \sim Q}[\log \frac{P(x, z; \theta)}{Q(z)}] \]
\[= \mathbb{E}_{Z \sim Q}[\log P(x, z; \theta)] - \sum_{z=1}^{m} Q(z) \log Q(z), \]

where for the inequality we have used Jensen’s inequality.

14. For a fixed \(\theta \), pick the distribution \(Q^*(Z) \) which maximizes the lower bound derived in the previous question. Show by yourself that bound is exact for this specific distribution. Hint: Do not forget to add Lagrange multipliers to make sure that \(Q^* \) is a valid distribution.

(a) \(P(Z|x; \theta) \)
(b) \(P(Z; \theta) \)
(c) \(P(X|z; \theta) \)
(d) \(P(X, Z; \theta) \)

Solution:
The correct answer is (a).

Now, assume that we want to maximize the above with respect to \(Q \), and let us add a multiplier \(\lambda \) to make sure that \(Q \) sums up to 1. Then, we have the following Lagrangian

\[L(Q, \lambda) = \sum_{z=1}^{m} Q(z) \log P(x, z; \theta) - \sum_{z=1}^{m} Q(z) \log Q(z) + \lambda (\sum_{z=1}^{m} Q(z) - 1) \]

By setting the derivative of the Lagrangian with respect to \(Q(z) \) to zero, we have

\[\frac{\partial}{\partial Q(z)} L(Q, \lambda) = \log P(x, z; \theta) - 1 - \log Q(z) + \lambda = 0 \implies Q(z) = e^{\lambda - 1} P(x, z; \theta) \]

. Hence, we have that \(Q(z) \propto P(x, z; \theta) \) and this is exactly the posterior \(P(Z|x; \theta) \), which we had to show.

It is also easy to see that the bound is tight, as

\[\mathbb{E}_{Z \sim Q}[\log \frac{P(x, z; \theta)}{Q(z)}] = \sum_{z=1}^{m} Q(z) \log \frac{P(x, z; \theta)}{Q(z)} = \sum_{z=1}^{m} P(Z|x; \theta) \log \frac{P(Z|x; \theta) P(x; \theta)}{P(Z|x; \theta)} = \log P(x; \theta) \]

15. Mark the following statements True or False.

(a) Optimizing the lower bound on likelihood with respect to \(Q(\cdot) \) is exactly the E-step.
(b) Optimizing the lower bound on likelihood with respect to \(Q(\cdot) \) is exactly the M-step.
(c) Optimizing the lower bound on likelihood with respect to \(\theta \) for fixed \(Q(\cdot) \) is exactly the E-step.
(d) Optimizing the lower bound on likelihood with respect to \(\theta \) for fixed \(Q(\cdot) \) is exactly the M-step.
(e) The lower bound on likelihood monotonically increases after each step of optimisation.
(f) The lower bound on likelihood monotonically decreases after each step of optimisation.
Solution:
(a), (d) and (e) are True statements.
We can easily see the EM algorithm as optimizing the lower bound with respect to Q and θ in an alternating manner. Specifically, if we optimize with respect to Q we have shown that the optimal Q is the posterior, and this is exactly the E-step. Optimizing with respect to θ for fixed Q is clearly equivalent to the M-step. As the lower bound is monotonically increased at every step the EM algorithm has to converge.