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Agenda for today: Exam 2019

* Question 3 Convolutional Neural Networks
* Question 5 Clustering
* Question 6 Dimensionality Reduction
10 mins break
e Question 7 Linear Discriminant Analysis

Question 8 Gaussian Mixture Models and EM Algorithm



Next in Agenda

Exam 2019

e Question 3



Recap: Convolutional Neural Networks

CNN architecture:

Key ideas:
e Robust predictions under transformations of data
e | ess parameters (scalability, overfitting) @
cC o+
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Output dimensions determined by: = 5 =
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e Stride: s >
e Padding: p

Training via Backpropagation!

Output




Recap: Convolutional Neural Networks

Key ideas: CNN architecture:
e Robust predictions under transformations of data
e | ess parameters (scalability, overfitting) @
cC o+
QO 00 §
Output dimensions determined by: = 5 =
* Inputof size:n X n Output dimension: L X L x M = = Q. >
o M filtersof size: f X [ |,here [ — n=ft g o E
e Stride:s >
e Padding: p
Training via Backpropagation!
input convolutional fully connected
layer layer layer
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Example: a simple convolutional network

e One dimensional input with 3 features,
e Asingle filter of size 2,

e RelU activation function,

e No pooling, no padding, stride of 1

___________________________________

Output




Exam 2019 - 3.i

Consider a one dimensional convolutional neural network given in the figure below. The input to the
network has three features x; to x3 each in R. The network consists of the following layers,

1. a convolution layer using a kernel of size two with weights k1 and k. The convolution uses
no padding and stride of length one,

2. afterwards ReLU (ReLU(z) = max(x,0)) is applied to get outputs y; and y»

3. afully connected layer applied to y; and y2 with the weights w and w2 to get a scalar output
T

input convolutional
layer

fully connected

Figure 2: Simple convolutional neural network.

(i) Forward Propagation (Num)

Suppose all weights (k1, k2, wi, ws) of the network are initialized to be 0.5. Consider an input
example x = ([1.0,1.0,—1.0]T. What is the value of r after forward propagating this input
example?

Solution to i
Let 9 denote ReLU activation function. At the convolutional layer, we have:

X1

ey JREE y1 = (@1 22] - k1 o)) = (@1k1 + Doks)
X2 k, Wi y, Y2 = Y([z2 x3] - [k1 ka]) = Y(x2kr + w3k2)
X3

At the fully connected layer:

41
V1 T = w1y + WaYo
V2 W2

Inserting vy, Y- into r gives us:

r = wip(T1ky + xoke) + worp(zoky + z3k2)

r| = 0.5¢(1) + 0.59(0) = 0.5

XI[].,].,—].] 7k1:2 20.5,11)1;2 =0.5



Exam 2019 - 3.ii

Consider a one dimensional convolutional neural network given in the figure below. The input to the (ii) Backward Propagation (Num)
network has three features 1 to z3 each in R. The network consists of the following layers, Suppose you are given, the same training example and the same initial welghts as in the previous
question. You want to backpropagate the loss to the input layer. Suppose = 2 for the example
oL
1. a convolution layer using a kernel of size two with weights k1 and k. The convolution uses point, what is 1 for the input example.
no padding and stride of length one, | |
2. afterwards ReLU (ReLU(x) = max(z, 0)) is applied to get outputs y; and y2 Solution to ii
3. afully connected layer applied to y; and y2 with the weights w and w2 to get a scalar output Let 9 denote ReLU activation function.
r.
At the fully connected layer: At the convolutional layer, we have:
, : r=wy +w y1 = Y([z1 2] - [k1 ka]) = P(z1k1 + T2k2)
input convolutional fully connected LY 7 W2l
| Y2 = P([x2 3] - [k1 k2]) = Y(z2k1 + z3k2)
layer ayer layer
| ottt T T T [ 1
| 1 ¥ | oL 0L _ OL dr _ 0L or 9
| Iy o | Then we use chain rule to express 2% such that: 2 — 22 0r _— 0L OF G41
| : 1 |l | 0z o0z or 0z or 3y1 oz
X ! |
1 1 1 1
! < B W1 !
. X2 :: i I Given g—L — 2 we further compute: 5’; = w; and ggl =Fky if 1k + 22k >0
(N 1 1
: L k, . Y2 T V2 " and 0 otherwise. Noting x1k; + x2ky = 1 for the specified values, we further have:
. X ! 1! I
I 8 : : 1 I oL
| - I | oL ~2.05-05=0.
Tt TS l=mmmmm - Slemmmmmmm s B O0z1 x=[1,1,—-1],k1.2=0.5,w1.2=0.5 0.5-0.5 0.5
Figure 2: Simple convolutional neural network.
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Exam 2019 - 3.

(iii) Activation Functions (T/F)

Letz € R, and o(x) = H%p(iz) be the sigmoid activation function. Determine which of the
following statements are true or false:

True False

X O  ReLU(x) is a non-linear activation function

g X The sigmoid activation can be represented as a finite combination of argument
scaled ReLLU(z). In other words, o(z) = Zle ReLU(a;x), where a; € R.

X O  The absolute value function |m\ can be represented exactly as finite combination of
argument scaled ReLU(z). ZL 1 ReLU(a;x), where a; € R.

O X limy o0 d‘ji; le=y = 00, where the vertical rule implies that the function is evalu-
ated at this point.

Solution toiiii

1. ReLU 9 (z) = max(z,0) is a nonlinear activation function (it does not
preserve addition or scalar multiplication).

2. Hint: ReLU is not differentiable

3. First, note that |x| = gz ifz>0 and |m| — —x otherwise

Second, look closer into ReLU:

()= =z ifz>0 P(—z)= 0ifz>0
0 ifrx<O —z ifz <0

Hence |z| = ¢(z) ifx>0 and |z|=v(—x) otherwise

Finally, note that: || = ¢(z) + ¥(—x)

4. Note that Lo (z) = o(z)(1 — o(z))

Therefore lim, o, o(y)(1 — o(y)) = lim, o (Ij%(%yy)% =0
Recall: vanishing gradients!

(iv) Learning Rate (T/F)
Decide which of the following choices for 7; defines a converging SGD method in general (assume
the losses are bounded).
True False

O X o log(t)

X O nx %

X O 1 ocmin(0.1,1)
(] X g ocel

Solution to iv

Robbins-Monro conditions: Learning rate 7; guarantees convergence if
> ¢ = 00 and me < 00

1> ,r’t}ntzlog(t) =00 and 2 n’fz‘ntzlog(t) -
2. Zt Ut’ntzl/t =00 and Et ng‘m:l/t < o0

B 2
=00 and Zt Up |77t:min(0.1,1/t) <

Zt nt{

3. Zt nt |77t:min(0-171/t)

= 00 = 00
4. Zt "7t|17t_exp and m—exp(t)



Exam 2019 - 3.v-vi

Having defined the neural network, we would like to optimize the weights of the network. Using
the shorthand ® = [k, ko, w1, wg]T, we can achieve our goal by minimizing the loss function
L(©®). The loss function L is assumed to be the mean squared error as follows,
1 n
L(©®) == (r(xi,®) —y;)>.

n <
=1

One could use the Gradient Descent (GD) algorithm defined as follows,

®t+1 = @t — nVL(@t)

where 17 > 0 is a fixed learning rate for minimization. As we have seen in the lectures, it is often
beneficial to apply the Stochastic Gradient Descent (SGD) update rule instead. With SGD, in each
round we pick a single training point, (x;, y;) among the dataset D, and based on it we compute
a gradient estimate, which is an unbiased estimate of the true gradient VL(®;). In order to
ensure convergence the parameter (learning rate) 7; in SGD varies.

Comment: The derivative operator is with respect to the variable ©.

(v) SGD vs GD (T/F)
Decide which of these statements are true or false about the comparison of SGD and GD.

True False
(] X One step of SGD is more computationally costly than GD.
0 X The learning rate for SGD needs to be always bigger than the learning rate for GD.

g X The learning rate for GD can be chosen to be any constant for it to converge whereas
for SGD we need to change it over time.
g X If we pick the points uniformly at random, after n iterations (N.B. n is the number of

data points) of SGD we would have always picked all data points at least once.

Solutionto v

1. Computing gradient requires summing over all data

2-3. Gradient Descent: Choose "t sufficiently small (fixed or adaptive)
Stochastic Gradient Descent: 7 adaptive over time
4. Recall that we draw a data point uniformly at random with replacement

(vi) SGD uniform (MC)

Assume that in each round we draw a sample (x;, y;) uniformly at random from the dataset D.
What is the appropriate SGD update rule that preserves the above mentioned unbiasedness prop-

erty?

001 =0, —n (VL(Oy) — V(r(xt, ©1) — y:)?)
O0O¢y1 = O — 2me(r(xt, O1) — y1)

X ®t+1 =0, — UtV(T(Xt, ®t) - yt)2

0O¢1 =0y — i V(L(Oy) — r(x¢, O — y1)?
Solution to vi

Gradient at t: g¢

Unbiasness of gradient: Choose any g: such that Eg; = VL(©;)
Let's analyze VL(©;) further:

VL(©;) =V i_il(r(xi, ©) —4i)* = X2 s V(r(xi,0;) — u;)’

i=1
SGD computes gradient at a randomly sampled point x;:
g = V(r(X,0;) —y;)> where X ~ Unif(D).
Hence Eg, =) ,.p P(X =x)V(r(x,0;) — yt)z‘XNUmf

= f %V(”’(Xt, O;) — yt)2 = VL(©,)

t=1



Exam 2019 - 3.vii

Having defined the neural network, we would like to optimize the weights of the network. Using
the shorthand ® = [k, ko, w1, ws] ", we can achieve our goal by minimizing the loss function
L(®). The loss function L is assumed to be the mean squared error as follows,

n
Z Xz ) yz

:['—‘

One could use the Gradient Descent (GD) algorithm defined as follows,

Oi11 =0, —nVL(O,)

where 77 > 0 is a fixed learning rate for minimization. As we have seen in the lectures, it is often
beneficial to apply the Stochastic Gradient Descent (SGD) update rule instead. With SGD, in each
round we pick a single training point, (x¢, y;) among the dataset D, and based on it we compute
a gradient estimate, which is an unbiased estimate of the true gradient VL(®y). In order to
ensure convergence the parameter (learning rate) n; in SGD varies.

Comment: The derivative operator is with respect to the variable ©.

(vii) SGD sampling (MC)
Assume that in each round we draw a sample (x;, y) such that

P ((x¢,yt) is sampled) = A , Vte{l...,N}

What is the appropriate SGD update rule that preserves the above mentioned unbiasedness prop-
erty?

UG =0 — 77t/\t (VL(©®1) = V(r(x:, 1) — ui)?)

0011 =0 — ,\ 2 (r(xt, ©4) — Y1)
X Oy1 =0y — £V (r(xe, ©) — yt)Q
0O =0, — —V(L(@t) —r(x¢, 0 — yr)?

Solution to vii
Gradient at t: g¢
Unbiasness of gradient: Choose any ¢; such that Eg; = VL(©y)

Let's analyze V L(©;) further:

VL(©,) = v%i_fjl(r(xi,@t) -

n
yi)2 = 21 %V(T(Xi, ©,) — yi)2
1=
SGD computes gradient at a randomly sampled point x;:
gt =nV(r(X,0;) —y;)>where P(X =x;) = )\;.
Hence Egt = ZtGD P(X = Xt)’)/tV(’l"(Xt, @t) — yt)2{P(X:xt):)\t

= Zl MYtV (r(x¢, ;) — yt)z
t=

If v o /\1—t then Eg; o« VL(O;) (Precisely, v =

1 . :
=, recovers the uniform sampling)



Next in Agenda

Exam 2019

e Question 5



Recap: k-Means Clustering

Basics:
e Data points are in Euclidean space x; € R?

e (Cluster centers given by p; € R? and each data point is assigned to the closest center

Z; —» arg min |x; — NjH% where z; = |1 : k] is the cluster of x;
J A
e Choose the centers that minimizes the average square distance R(u):

N

i = argmin R() where R(u) = Ryn,... ) = 3 min x; —
I i=1J=I1:
The Algorithm:
e 1 ©0) _ .0 Initialization of centroids
Initialize p™ = py, (0 How to choose k?

Assignment of data points to clusters: z;’ — argmin ||x; — ,ug-t_l) 13

Update cluster centers: u§t) - ni > ox; !
J
iz} =j



Exam 2019 - 5.i-ii

The k-means problem is the problem of clustering data represented as a matrix X = [xq, ..., xn]T €

R"™*4 into k different clusters.

The clusters are defined by their so-called centroids {ji1,. .., u;} where each p; € R% Letz €
{1...k}" be a vector representing the assignments of the data points to clusters. In other words, a
data point x; is assigned to cluster z;.

(i) Basics (MC)
What is the objective function of the k-means optimization problem?
RS0 (i — s 3
O X [ — a3
OS5 Il — mill3
O i e, — i3

Solution to i

k-Means objective is the average squared distance between the data points
and their respective centroids

(it) Lloyd’s heuristic (T/F)
Which of these statements about Lloyd’s heuristic are true or false?

True False

g X It always converges in polynomial time.
X O It always converges.
X O It always converges to a local optimum.

X O  The solution can be arbitrarily bad compared to the global optimum.

Solution toiii

1. It can take exponentially many steps to converge! (in practice it converges
very fast)

2-3. We will show that the loss function is guaranteed to decrease monotonically
() Assignment step: z} « argmin ||x; — p; |3

J=[1:H]
The change in the loss function is given by:

L, 2*) — Ly 2) = 33 (s — o

=1

3= llxi —pz3) <0

(b) Refitting step: We can re-write the loss function as: Lp,z) = i S llxi — 52
i=ilz=j

After the assignment step, the change in the loss function becomes:
k N ) N 5
L(p*,2") — L(p, 2%) = 3. (2 i = a5l = 2l = pill3) <0

j=1 1=
Hence, we can infer from above that I

) and loss function is
monotonically decreasing.

(u*,2%) < L, 2

4. Due to its non-convex nature, the solution (a local minima) could be arbitrarily
bad.



Exam 2019 - 5.iii-iv

The k-means problem is the problem of clustering data represented as a matrix X = [xq, ..., xn]T €

R"™*4 into k different clusters.

The clusters are defined by their so-called centroids {ji1,. .., u;} where each p; € R% Letz €
{1...k}" be a vector representing the assignments of the data points to clusters. In other words, a
data point x; is assigned to cluster z;.

(iii) k-means++ (T/F)
Which of these statements about the k-means++ initialization are true or false?

True False

0 X It chooses the initial centroids deterministically.

] X It chooses the initial centroids all at the same time but refines them sequentially if
they are the same.

X O It chooses the initial centroids sequentially, where every new centroid is dependent
on all the other already chosen ones.

0 X The solution can be arbitrarily bad compared to the optimal centroids in expectation.

Solution to iii

1-3. k-means++ is a centroid initialization technique where centroids are
selected sequentially such that they are likely to be in distinct clusters. The
principle is to use importance sampling where sampling probabilities are
updated adaptively (adaptive seeding).

4. The expected cost is O(log k) times the cost of optimal k-Means solution

(iv) Criteria (T/F)
Which of these methods can be used to choose the number of clusters k?

True False

Prior knowledge

The “elbow criterion”

Minimizing the k-means objective w.r.t. k£ on the training set
Minimizing the k-means objective w.r.t. k£ on a held-out validation set

O0KXKX
XX OO

Solution to iv
1-2. Strategies to determine k includes

o Exploratory analysis

e "elbow criterion": Choose a k such that a small decrease in loss is
started to be observed (diminishing returns)

e Regularization: jointly minimize over k and centroids with a penalty on
the number of clusters k

3-4. Why not cross validation?

As number of clusters increase, both training and generalization loss
decrease as the average distance between the data points and their
centroids decrease!



Exam 2019 - 5(2).i

Assume we have five one-dimensional points: 1 = 0,292 = 1,23 = 1,24 = 3,25 = 5. We want to
cluster these points using the k-means algorithm (Lloyd’s heuristic).

(i) For k = 2, if we initialize the centroids as ;3 = 0 and puo = 5, which solution (in terms of
2, and z) will the algorithm converge to?
Hint: For example, z; = 1. Use the decimal point format. (Tolerance £0.01, i.e. you can round
up or down.)

Solution

Initialization: Mgo) = 0 and ,u(lo) =5

t=1:

Assign clusters: zgl) — 1,251) — 1,z:(,,1) — 1,z£1) — 2,zél) — 2

Update centroids: ,ugl) = %(xl + X9 + X3) = %, ,ugl) = T(x4+x35) =4

Y Convergence takes place
Assign clusters: z§2) — 1, zéz) «— 1, z§2) «— 1, zf) — 2, zé2) — 2

Update centroids: ,u?) = %(xl + x5 + x3) = %, ,u(22) = 2(x4+x5) =4

Centroids: p; = % ~ 0.66, p, =4

Assigned clusters: z; = 1,29 = 1,23 = 1,24 = 2,25 = 2




Next in Agenda

Exam 2019

e Question 6



Recap: Dimensionality Reduction

Suppose z; € R%,i € {1,---,n} and we want to learn a mapping f : R? — R* with k << d where we can reconstruct

the data with loss of information

Motivation: Visualization, compression, regularization, unsupervised feature discovery

Key question: How to choose the mapping f? 2 dimensions <

You have seen so far:

® Principal Component Analysis

® Kernel PCA

---» 3 dimensions

® Neural Network Encoders

image credit: https://bigsnarf.wordpress.com/



Recap: Principle Component Analysis

Suppose z; € R%,i € {1,---,n} and we want to learn a mapping f : R? — R* with k << d where we can reconstruct

the data with loss of information
Motivation: Visualization, compression, unsupervised feature discovery
Key question: How to choose the mapping f?

Principal Component Analysis (PCA)

Recall from the lecture that PCA is a dimensionality reduction technique

z; = WTx;, W ¢ R
which minimizes the %IZH EZ: |Wz; —x;||2 for orthogonal W
Solution to PCA. For centered data: {x1,---,X,}

W* = (V1| e |Vk) and Zz; = (W*)TXZ' where ¥ = zd:)\ivivT A1 > 22X 2>0

19
1=1

image credit: https://bigsnarf.wordpress.com/



Exam 2019 - 6.i-iii

In dimension reduction, we want to embed high dimensional data from a space R? to a space R” Solution to ii
with k£ < d. We therefore want to represent the data X = [xy,. .. ,Xn]T € R™4 with the respec- . . . 9
tive lower-dimensional embeddings Z = [zq, ..., zn}T € R™*. One particular method for dimen- For k = 1PCA optimizes for min Z ”WZZ - X HZ

w,||wll2=1,zielm 4
sionality reduction is the Principal Component Analysis (PCA), where the embeddings are given by vl ot
— W/ . dxk . . L .
z; = W x;, where W € R, Towards solving, we jointly optimize for (w*,z*) = argmin Y |[wz; — x; /|3
w,[|wl2=1,z i

(i) PCA general (T/F)

Determine whether the following statements about PCA are true or false. For a fix w, the optimal z : z* is given by z;“ — WTXZ-. Hence
True False % . T 9
X O  PCAis alinear dimension reduction method. W = alg My |w|,=1 ; ||WW Xi =X ||2
(] X  The first principal component is the eigenvector of the data covariance matrix with
the smallest eigenvalue.
X O  All principal components are mutually orthogonal. (iii) PCA general III (T/F)
O X PCA is regarded as a supervised learning technique. When & > 1, the matrix W
True False
Solution to i X 0  WTW is the identity
u W is symmetric
1.Wewant Wz, ~x; W € Rk 0 X Wisdiagonal
2. That does not minimize > [|[Wz; — x;||3 O WW ' is the identity

Solution to iii

d
Recall that W = (vy|---|v}) where ¥ = }° )\z‘ViV;TFa A >-->X>0
i=1

3. Due to orthonormality ofivk‘s, we have VZVZ =1[k =]
4. Unsupervised: no labels

(ii) PCA general II (T/F) . .
Suppose k£ = 1, and hence W becomes a column vector w. Which of these objective functions We have the followmgs.
is a valid PCA objective: T T T
True False (WW )i,j = Zm:[k] (Vm)i (vm)j and (W W)z,] =V;V;
X O argming wjz—1qz}n S Iwz — 13

Therefore it only holds that WT'W is identity.

. ) n Te. <. 2
arg i =1 i [|ww s =i (Orthonormality of eigenvectors implies the identity matrix)

X O
U K argming yp-1 2y [[W X —w( Yo Xi) H§
O X

n2

arg minw,{zi}?zl % Z?:l ||WZ1 - XZH%



Recap: Kernel PCA

Motivation. How to capture manifold structures?

Kernel PCA. Apply Kernel method to PCA!  [k(x,2) = (21, V22125, 23)" (21, V2212, 23) = (x"2)”

Map data to higher dimensions where contain linear patterns: Data becomes linearly separable in the new feature space

Example. Feature mapping function ¢ :R* = R®  (z1,22) — (21, 22, 23) = (2}, V22122, 3)

. *,0
o8 | o feature mapping WL
o e A X
o (*ole®) o [> &
¢

oo e

Data in low dimensional space Data in high dimensional space

The feature mapping ¢ is not necessary to know! We deal with kernel functions instead

Recall from the class that kernel principal components a®, .- ,a®) e R" are given by o) = \/&—vz where

Xi, vi,i ={1,--- ,n} are obtained by eigendecomposition of K = 3> A;viv7

i=1

A new point z is projected as |z; = Y ay)k‘(ib‘,wj)
j=1




Exam 2019 - 6.iv

In dimension reduction, we want to embed high dimensional data from a space R? to a space R*
with k < d. We therefore want to represent the data X = [x1,...,x,]" € R"*? with the respec-
tive lower-dimensional embeddings Z = [zy,. . ., zn]T € R™**. One particular method for dimen-
sionality reduction is the Principal Component Analysis (PCA), where the embeddings are given by

z;, = WTx;, where W € R4xk,
(iv) Short questions on kernel PCA (T/F)
Determine whether the following statements about kernel PCA are true or false.
True False
Kernel PCA is equivalent to PCA when used with linear kernels.
Kernel PCA can only identify invariant linear subspaces.
The complexity of kernel PCA is independent of the number of data points.
The kernel is often centered as a preprocessing step.

XOOKX
OX X O

Solution to iv
1. K = Z )\Z’VZ'VzT
=1

1

2. Kernel PCA can also be used to identify invariant linear subspaces
with the use of nonlinear mappings ¢

3. Taking eigenvalue decomposition of the kernel matrix K and
computing (%) leads to a complexity that grows with number of points

4. Analogue linear PCA to Kernel one by setting empirical mean to 0




Recap: Autoencoders

Use neural network autoencoders to learn the nonlinear mapping for dimensionality reduction through an
r =~ f(x;0)
Properties of f(-): approximates the identitity function & performs compression

How to pick f(-): Composition of two nonlinear functions f1(*) and f2(+) such that

f(z;0) = f2(f1(z;601);62) where fi(-) :R* = R* and  fa(-) : RF - R?

How to learn fi(:) and f2(:) ? Use Neural Networks!

Non-linear generalization of PCA.



Recap: Autoencoders

f1::Iﬂ<3---olﬂ:]Rd—+]Rk,x-—>% fo=Fpo---0oF,:R¥ —%Eﬁ,z—%:&
encoder i decoder ’
How to autoencoders?

Optimize the weights such that
backpropagation.

Autoencoders vs. PCA

Tl

original autoencoder PCA

% = fogwl, w®) = £ (fiswl);wl) ~ % eg., min 3 [|x; — f(xi; W)J3| via
1=1

image credit: http://nghiaho.com

See js demo for digit images:

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoen

.html

COC


http://nghiaho.com/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Recap: Autoencoders

Given data points x; € R%,4=1,--- ,n compress data into k-dimensional representation k < d.

Linear auto-encoding with a single hidden layer

How to choose Eand D?

n
Optimal solution satisfies: [min Y |lx; — DEx;|[5
i=1

- E ¢ kad D c Rdxk =
E = Uk encoder decoder D = U, —— DPEX = UkAka

Eckart-Young theorem: Let X = [x; - --X,] € R¥" and SVD of X = UAV. For k < min(n,d)

argmin || X — XH% = UkAkV£
X :rank(X)=k




Exam 2019 - 6.v

In dimension reduction, we want to embed high dimensional data from a space R? to a space R*
with k < d. We therefore want to represent the data X = [x1,...,x,]" € R"*? with the respec-
tive lower-dimensional embeddings Z = [zy,. . ., zn]T € R™**. One particular method for dimen-
sionality reduction is the Principal Component Analysis (PCA), where the embeddings are given by
z;, = WTx;, where W € R4xk,

(v) Short questions on neural network autoencoders (T/F)
Determine whether the following statements about neural network autoencoders are true or
false.
True False

O X A neural network autoencoder cannot model nonlinear manifold structures.

X g In general, the performance of a neural network autoencoder depends on the
initialization of the weights before the optimization.

X O At the global optimum, a neural network autoencoder with linear activations and
squared loss is equivalent to PCA.

g X Training of an autoencoder with linear activations is a convex optimization problem.

Solutionto v

1. A neural network autoencoder can model nonlinear manifold
structures with use of nonlinear activation functions

2. Due to the non-convex objective, initialization matters

3. Eckart-Young Theorem

4. Non-convex due to the dimensionality reduction constraint




Next in Agenda

Exam 2019

e Question 7/



Recap: Discriminative vs. Generative Modeling

e Discriminative models estimate class conditional probabilities P(y|x) = —PI(D%S)

e Generative models estimate joint distribution P(y,x) = P(x)P(y|x)

e Estimate the distribution of class labels P(y)

e Estimate the conditional distribution for each classy P(x|y)
e Obtain predictive distribution using Bayes' rule

P(y|x) = 5 P(y)P(x]y)

Naive Bayes Classifier

e Form distribution on class labels from categorical variables P(Y = y) = Dy
e Features are conditionally independent given class label

P(Xi=x1,...,Xn =z,)Y =y) = H?Zl P(X; =xz;|Y = vy)



Exam 2019 - Z.i-ii

In this problem we would like to perform classification using linear discriminant analysis (LDA). We
assume the following simplified model,

PX]Y =j) = N(p;, 1)

where I € R?*? is an identity matrix and j € {1,2}. Furthermore, we parametrize P(Y = 1) = p,
and naturally P(Y =2) =1 —p.

Consider a data set D = {(x;, y;) }I"_; where n; represents the number of samples such that y = j.

(i) MLE Probability (Num)
Assuming that n; = 1 and ny = 3 calculate the MLE estimate of p, p.

Solution to i

Class labels Y = {1, 2} with probabilities
PY=1)=p and PY=2)=1-p

Conditional distribution of X given a class label P(X|Y = j) = N (u;,1)

Gaussian Naive Bayes classifier

Estimate parameters of P(Y), i.e., p, using D = {(x;,y;)}}, via
Maximum Likelihood Estimation (MLE):

p = arg max P(D|p’)
p/

P(Dly) = [, ()8 (1 - p) =2 = () (1 - p) = p/(1 - p)?

P(D|p') is maximized when derivative is 0: (1 —p')3 —3p'(1—p')2 =0

Note that this happens at p’ = 0.25. Hence the estimate of p is given by 0.25
Summary: p(y = y) = Sount’=y)

n

(ii) MAP Probability (Num)
An expert on the problem at hand has told us that he is sure that p = 0.5 or p = 0.25 with equal
probability. Assuming this as a prior belief, calculate the maximum a-posteriori estimate of p, p:

Solution to ii

¢ (Calculate two posteriors for p=0.25 and p=0.5
e Then choose the one that maximizes P(p'|D) « P(p')P(D|p)
e Given P(p') = 1/2for both p’, pyxp = 0.25



Final Exam 2019 - 7Z.iii

In this problem we would like to perform classification using linear discriminant analysis (LDA). We
assume the following simplified model,

PX]Y =j) = N(p;, 1)

where I € R?*? is an identity matrix and j € {1,2}. Furthermore, we parametrize P(Y = 1) = p,
and naturally P(Y =2)=1—p.
Consider a data set D = {(x;, y;) }I"_; where n; represents the number of samples such that y = j.

(i) MLE II (MC)
Which of the following expresses the MLE estimate [i1 of y;?

N = L )
X H1 = ny Zi,s.t.yi:1 X

Fa— ni .
O H1 = ni+n 2,8.ty; =1 X
[, — "L .
L] M1 = no Zi,s.t.yi:l X

U Cannot be derived from the information given.

Solution to iii

Class labels Y = {1,2} with probabilities
PY=1)=p and PY =2)=1-p

Conditional distribution of X given a class label P(X|Y = j) = M (u;,1)

Estimate parameters of P(X|Y") using D = {(x;,y;)}* ; via Maximum
Likelihood Estimation (MLE):

fij = argmax P(D|Y = j) = argmin — log P(D|Y = j)

I I
=argmin— Y log P(x;|Y = j)
i, iV
_ : _ 1 1y T (o
= arg/;mn M;j log G A <P (= 3(xi —p)) "= (%
j 1
=argmin > (% — p))" (xi — pj)
W aYiej

J

~ 1
Remember from the class that fi; = Count(Y; =7) m;:j *

. ~ 1
Summary: L= T (=) ; X;
Y=y

A

= mntlyTy) 20 (= )T (ki — py)

Y=y

/

))



Exam 2019 - 7.iv

In this problem we would like to perform classification using linear discriminant analysis (LDA). We

assume the following simplified model,

P(X]Y = j) = N (3. T)

where I € R%*4 is an identity matrix and j € {1,2}. Furthermore, we parametrize P(Y = 1) = p,
and naturally P(Y =2) =1 —p.

Consider a data set D = {(x;, y;) }/_; where n; represents the number of samples such that y = j.

(iv) Decision rule (MC)
Suppose that we have the estimates of p; and ji; for all j. The LDA provides a decision rule that
given an X, it can predict its class. Which of the following is a valid procedure to predict the class
label of x using LDA.
Comment: p; = pand ps =1 — p.
0 :g =arg maxj€{1,2} eXp(fﬁijgﬂJ”é )

O g = argmax;e(y o} (X — /}/j)Tﬂj + ﬁj

K § = argmax;e(y,23(2x — ﬂj)Tﬂj + 21og(p;)

O =: I _lx=l13

§ = arg max;e(y,2) exp( %, )
_n 2

0 ¢ = argmaxcqy 9} exp(——”x Z;:JHZ)

o Estimate the distribution of class labels P(y)
« Estimate the conditional distribution for each classy P(x|y)
e Obtain predictive distribution using Bayes' rule

P(ylx) = 5P () P(x]y)

y = arg max P(y'|x) minimizes the misclassification error
/

Y

y = argmaxlog P(Y = j|x) also minimizes the misclassification error
J

log P(Y = j|x) = log (L

P(x)

PY =) T P@lY = 5)

1

d
= log piy +log P(Y = j) + EllogP(:ri\Y = j)

1

+log P(Y = j) + 3 log —=— exp(—52 (z;

d
y = argmax log P(Y = j|x) = arg max logp; — % > (mi — :“J}i)2

J

j =1
d
= argmax logp; + % _21(2%',%',2' - M?Z)
J =

= argmax 2logp; + (2x — ;)" ji;
j

- /‘j,i)2)



Exam 2019 - 7.v

In this problem we would like to perform classification using linear discriminant analysis (LDA). We

assume the following simplified model,

P(X]Y = j) = N (3. T)

where I € R%*4 is an identity matrix and j € {1,2}. Furthermore, we parametrize P(Y = 1) = p,

and naturally P(Y =2) =1 —p.

Consider a data set D = {(x;, y;) }/_; where n; represents the number of samples such that y = j.

(v) Decision rule Il (MC)
Fx(f — fiz) > % (ﬂlTﬂl — ﬂ;ﬂg), x is classified as
O 1 for any p
0 2 for any p
d2ifp=0.5
K1lifp=0.5

Solutionto v

y = argmax log P(Y = j|x) minimizes the misclassification error
J

d
log P(Y = jx) = log (55 P(Y = ) IT P(a¥ = 5))
d'=

= log gy +log P(Y = j) + 3. log P(&,[¥ = J)

d
= log 55 + log P(Y = j) + ;log = exp(— g7 (@i — 14)°)

27rai2

d
y = argmaxlog P(Y = j|x) = argmax logp; — 3 Zl(xz — Hji)?
J J i

= argmax logp; + % 21(2332',%',1' - M?Z)
J =

= argmax 2logp; + (2x — f1;)T i
j

It is clear that:

If 2logp; + (2x — fu1)T iy > 2logpy + (2x — fio)T i, then x is classified as 1
else it is classified as 0.

For p = 0.5, the decision rule can be re-written as:
If 2xT gy — pf iy > 2xT iy — (i3 fio then x is classified as 1, else as 0.

In other words, if 2xT (1; — fis) > i iy — i3 1y then x is classified as 1, else as 0.
We finally arrive at the solution by dividing each side by 2.



Exam 2019 - 7.vi

In this problem we would like to perform classification using linear discriminant analysis (LDA). We
assume the following simplified model,

PX]Y =j) = N(p;, 1)

where I € R?*? is an identity matrix and j € {1,2}. Furthermore, we parametrize P(Y = 1) = p,
and naturally P(Y =2) =1 —p.

Consider a data set D = {(x;, y;) }I"_; where n; represents the number of samples such that y = j.
(vi) Decision Theory (MC)

Suppose that there is a cost associated with predicting class 1 wrong which is « times more than

the cost associated with predicting the class 2 wrong. Naturally, predicting correctly incurs no
cost.

Assuming that we want to minimize the expected cost of the decision policy and p = 0.5, which of
the following is the right decision boundary for the problem when using LDA from the previous
question.

5 (] fu = fig fi2) + log(c)
00=x"(1 — fia) = 5 (i fn = fig fiz) + @
00 =x" (i~ fiz) = 5 (A f1 — 13 fa
O It cannot be decided without the knowledge of the cost of predicting the class 2 incorrectly.
00 =x" (1 — fia) — 5 (i fn — iy fiz) + log(p1 — ap)
00=x"(1 — fi2) — 5 (Al fin — iz o2) +2(1 — )

Solution to vi
We are given:
 Predictive distribution P(Y = y|x)

e Setof actions A4
o Cost function to penalize our actions ¢: Yy x A > R

Task: Predict the label given x where cost of actions are different, formally
Cla=2Y=1)=ak and C(a=1Y =2)=k

Minimize the expected cost a* = argmin, . 4 E[C(y, a)|x]
where E[C(y,a)|x] =3 ., P(Y = y[x)C(y,a)

If a=1 then E[C(y,a=1)|x]=PY =1x)C(y=1,a=1)+P(Y =2]x)C(y =2,a=1)
=P(Y =2|x)k

Else (a =2), E[C(y,a=2)]x]=P(Y =1|x)C(y=1,a=2)+ P(Y =2|x)C(y =2,a = 2)
= P(Y =1x)ak

We can write down the decision rule as follows:

If P(Y =1|x)ak > P(Y = 2|x)k then choose action 1, else choose action 2.
Taking logarithm of each side and incorporating the derivation of P(Y = y|x), y = 1,2
from the previous question, we can write down the decision boundary as:

xT(piy — fh2) — 5 (4] fix — 4 fiz) +loga =0



Exam 2019 - 7.vii

In this problem we would like to perform classification using linear discriminant analysis (LDA). We where w=3-1! ((pr — ) and  wy = % (T 31 bh_ — ﬂ{ 31 fit)
assume the following simplified model,

Hence the class distribution:

_ _ 1 _ T
P(X|Y:j):./\/(’uj71) P(Y—l‘x)—m—U(W x—|—w0)
ic |i i H H d+1)d .
where I € R?*? is an identity matrix and j € {1, 2}. Furthermore, we parametrize P(Y = 1) = p, 4. LDAis linear in d while QDA requires % parameters to estimate upper (lower)
and naturally P(Y =2) =1 —p. triangle of covariance matrix, in addition to the complexity for estimation of mean and
Consider a data set D = {(x;,¥;) }|-; where n; represents the number of samples such that y = j. another parameter for the prior.

(vii) LDA vs QDA (TF)
In the lectures, you have compared LDA with quadratic discriminant analysis (QDA) and logistic
regression. Determine which of the following statements are true or false:

True False

O X  Had we assumed a model P(X|Y = j) = N (u;, %) for each j, where X is not
diagonal, LDA would arrive at a quadratic decision boundary.

O X  LDA and logistic regression have the same assumptions.

X 0  When the assumptions of logistic regression and LDA are met they share the same
decision boundary.

X 0O  Assuming a two class problem, QDA needs to estimate at least (d+1)d parameters

2
while LDA only d.

Solution to vii

1. Shared variance leads to a linear decision boundary
2. LDA assumes: Shared variance, density is Gaussian, balanced classes
3. Gaussian Naive Bayes model with constant variance uses the discriminant:

f(x) = log pry—rgy = w'x + wp




Next in Agenda

Exam 2019

e Question 8



Recap: Gaussian Mixture Models and EM Algorithm

Gaussian mixtures: P(x|0) = P(x|u, ¥, w) = > mN(x; pi, X;)
where m; >0 st ), m =1
EM Algorithm:
[ Initialize the parameters 6(%)
[1Fort =1,2,...until convergence:
o E-step: Predict most likely class for each data point

(t) _ 21 p(t—1) 1, p(t-1) P(x: |, ot
- E) (t) - h t—1 - P(z@ _.7|9 )P(xl‘zi _.770 ) _ Ty (Xz|,Ll,j 1 )
Tji = (zz' J |x’i7 9( )) — P(x;]0¢-D) 1) 1

o M-step: Maximize the likelihood function

6) = arg max P(x;.5]|0) = argmax | [, P(x;|0) = argmax ]|, Zj N (x5 piy 2;)
0 0 0

Maximum Likelihood Estimation:

% 35, i (ki 13 (ki 15) = LSV W
T 2= Ay - Lo ;= NZz‘:l Ty



Exam 2019 - 8.i-iv

Suppose you have a dataset D = {xi,...,X,}, where each x; € R is generated with a Gaus- o E-step: Predict most likely class for each data point
z?;:;f;rfnzﬁizls(?glw) w1§1 k} components with weights {wy ... wg}, means {u1,. .., ux}, and o P(z(t) _; |x. g(t—l)) _ P(zi(t) —j[gttD )P(xz'lzft) =j,0(t71)) _ ij(xim;t—l) 725}6—1))
1yev-y &k 7, 1 19 P(xi‘g(t—l)) Zl ﬂ_]_P(xilﬂ‘l(t—l) ’El(t—l))

(i) Basics (MC)
Which of the following independence assumptions is encoded in the Gaussian mixture model?
X The points x; are independent of each other.
0 The points x; are dependent on each other when conditioned that they were sampled from the
same mixture component.
O The points x; need to be dependent of each other.
[ The points x; can be but not need to be dependent of each other.

(iv) M-step (MC)
In the M step of the EM algorithm applied to GMMs you:
[ maximize the marginal data log-likelihood, where the marginalization is taken with respect to
the distribution calculated in the E-step.
X maximize the expected joint data log-likelihood, where the expectation is taken with respect
to the distribution calculated in the E-step.
0O maximize the expected joint data log-likelihood, where the expectation is taken with respect
to the true distribution P(w|x).

(ii) Basics I (Form) [ maximize the marginal data log-likelihood, where the marginalization is taken with respect to

What is the a priori probability that a point from the dataset belongs to the i-th center. the true distribution P(w[x).

Hint: The answer is a symbol not a text and has already been introduced. L. o .
o M-step: Maximize the likelihood function
w; = P(z = 1) wherei € {1,2,...,k
i=Ple=9w {1,2,., k) 6®) = arg max P(x;.y|0) = argmax [[, P(x;|6) = arg max []; >0 TN (x5 iy 2i)
0 0 0
(iii) E-step (MC)
Let
0= (wl---wk7/1/17"'7,u/€7217"'azk)

be the parameters from the previous M-step and z; be the assignment of point x; to a mixture
component taking values in {1...k}. Capital letters denote random variables. In the E-step of
the algorithm you compute:

OP(X =a;|Z; =j,0)foralli € {1...n}andj € {1...k}.

X P(Z; =j|X =x;,0)foralli e {1...n}and j € {1...k}.

OP(Zi=3j,0)foralli e {1...k}andje {1...k}.

OP(X =a;,0) foralli € {1...n}.




Recap: EM Algorithm

General Procedure:
[] Initialize the parameters 9(0)

[1For t =1, 2,...until convergence:
o E-step: Calculate expected complete data log-likelihood (function of )
Q(0|9(t—1)) — IEzl;N [lOg P(xl:N7 Zl:N|0) |X1:N7 H(t_l)]

X; : observed values z; : missing values

o M-step: Maximize the likelihood function
0t) = arg max Q(0|6¢V)
0



Exam 2019 - 8(2).i

Your friend comes up with an unfair four-sided die which takes values in {1, 2, 3,4} and asks your
help to estimate its properties.

She knows that the die takes value 1 with probability 411’ 2 with probability €, 3 with probability 2¢
and 4 with probability % — 3e. She already tried to estimate the probabilities and she recorded the
outcomes of rolling the die. She observed that the side 4 appeared =4 times and the side 3 appeared
x3 times. She also observed that the side 1 and side 2 appeared x12 times in total, unfortunately she
did not note how many times 1 and 2 appeared separately. In other words, 1 and x2 are unknown
values with £ + x2 = x12 and she only knows x12. We can model the unknown occurrences of side
1 and 2 by two random variables X; and Xy, respectively. These two random variables then satisfy
the constraint X; + X9 = x12. You immediately realize that the EM algorithm can be used to get a
MLE for € and you decide to calculate it.

Comment: Simple MLE estimate can be used to solve this problem by ignoring some information,
but due to data efficiency we choose to perform EM. Also, note that capital letters denote random
variables.

(i) EM on a tetrahedron die - E-Step (MC)
What is 11 = E[X1]|e] and ro = E[X3|¢] respectively?

1/4 c
Nroyne 1210

- _e
Drieypm Tiyse

/4
Ozia1ts, -7712%

T12 12
O Ve Y W

O E$12+€ EI12+E

1/4+¢° 1/4+e
z12 T12
0 €ipyer  Cijate
0 E9E12-‘r1/4 z12+1/4

1/2+e > 1/4+¢

Solution to (2).i

(A Multinomial Example)

PY=1)=1 P(Y=2)=¢, P(Y =3) =2cand P(Y =4) = 3 — 3cwhere {Y = j} is
observed z;,j = [1 : 4] times.

The density of data: fx)g = #ﬂ;s,m,(%)“ ()72 (2e)™ (3 — 3e)™

Log likelihood is given by: log fxg = ¢ 4 1 log 1 + 22 loge + z3(log 2¢) + z4log(3 — 3¢)

Note that z; and z; are not observed (are missing).

Denote them by random variables X; and X5 such that X; + X2 = x12
Log likelihood can be re-written as:

log fyjg = c + (712 — X2) 10g% + Xz loge + z3(log 2¢) + x4 10g(% — 3¢)

We write first E-step as:

Q(‘9|9(0)) = Ex, [log fY|9|3312, T3, L4, €]
=Ex,[c+ (z12 — X3) log % + Xsloge + z3(log 2¢) + x4 log(% — 3¢)|z12, T3, T4, €]
= Ex, [X; loge|z2, €] + z3(log 2¢) + z4log(3 — 3¢)

Note that X5 is binomial with sample size 12 and parameter WZ_%' Therefore,

1/4
IMOreover, 1y = L1 — Ty = T12

ro = Ex, [X2|‘€] = 14 1/4+¢

1/4+¢€?



Exam 2019 - 8(2).ii

Your friend comes up with an unfair four-sided die which takes values in {1, 2, 3,4} and asks your
help to estimate its properties.

She knows that the die takes value 1 with probability 411’ 2 with probability €, 3 with probability 2¢
and 4 with probability % — 3e. She already tried to estimate the probabilities and she recorded the
outcomes of rolling the die. She observed that the side 4 appeared =4 times and the side 3 appeared
x3 times. She also observed that the side 1 and side 2 appeared x12 times in total, unfortunately she
did not note how many times 1 and 2 appeared separately. In other words, 1 and x2 are unknown
values with £ + x2 = x12 and she only knows x12. We can model the unknown occurrences of side
1 and 2 by two random variables X; and Xy, respectively. These two random variables then satisfy
the constraint X; + X9 = x12. You immediately realize that the EM algorithm can be used to get a
MLE for € and you decide to calculate it.

Comment: Simple MLE estimate can be used to solve this problem by ignoring some information,
but due to data efficiency we choose to perform EM. Also, note that capital letters denote random
variables.

(if) EM on a tetrahedron die - M-Step (MC)
What is the MLE of £? You can now use the expected values of X; and X, r1 and 79 respectively.

T12—T2+x3
4(x12—r2+T3+24)
Ti2+r1+3
4(z12+w3+T4)
T12+w4
4(z12+x3+T4)
T1+rot+a4
4(x12—x3+74)
O r1+%4
4(x124+w3—74)
ritrotag
d(z12+r3+as)
r1+ro4a4
4(z12+x3+74)
.

4
U 4(x12+x3+7T4)
ritre
4(x124+x3+7T4)
T12—Tr1+x3
4(x12—r1t+w3+a)

Solution to (2).ii
We have previously computed log-likelihood at M-step as:
Q(0le) = Ex, [X3|T12,€]loge + x3(log 2¢) + x4 log(% — 3¢)

We write first M-step as:

0* = argmax Q(6|e) = argmax ry log e + z3(log 2¢) + x4 log(3 (1 — 4¢))

3 3

Setting Q(0|e) to 0 gives us 6* :

LQ(0le) = £ (ryloge + z3(log 2¢) + z4log(3 — 3e)) = 22 + & — ;2

) Zz T4 * ro+3
€ + € 1-4e — Oate” = A(ry+z3+xy)

Replacing ry with 215 — 7 gives us the result.



QUESTIONS?

Post them on Piazza!




Thank you



