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Exam 2019, Question 1

This questions is about weighted linear regression. You are given a dataset consisting of n labeled
training points D = {(x1,91); .-, (Xn, Yn) }, where x; € R? and y; € R.

In addition, you are given a set of non-negative weights {\1,..., A, }, where > ; A\; = 1. Each
weight \; € R reflects the importance of correctly estimating the label of a specific training point
(i, Yi)-

A common approach towards this task is to find a solution w € R? which minimizes the weighted
empirical risk R(w), which is defined as follows:

f?(W) = z /\i(WTXi — yi)2 .
i=]



Exam 2019, Question 1.1

(i) Analytic Solution (MC)
Let us denote by X € R™*4 the matrix whose rows are {x1,...,Xn},y € R" arow vector whose
entries are {y1,...,Yn}, and let A € R™*" be a diagonal matrix such A;; = \;

What is the closed form solution for the minimizer w := arg miny, g R(w)?
Comment: You may assume that the matrices X ' X and X" AX are invertible.
W= (XTAX) I XTAy

w=AX"TX)"1XTAy

W = Al/2(xTx)—leAl/2y

W =X AX) 11X T ALy

W = (XTx)—leAl/‘zy

w={(X'X)"X Ay

EEEEEEE -
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Exam 2019, Question 1.1
Rw)=(w'X" —y")AXw —y)
=w X'AXw —w'X"Ay —y"AXw +y' Ay

2w X"AXw — 2w ' XTAy + y Ay

x 1y AXw is a scalar

=y "AXwW = (y lAXW) = w!XT Ay



Exam 2019, Question 1.1

Rw)=w'XTAXw - 2w'XTAy + y Ay
= Vy,R(w) = 2XTAXw — 2X Ay = 0
— XTAXwW = X Ay

= w = (XTAX) XAy



Exam 2019, Question 1.2

(ii) Probabilistic Interpretation (MC)
Consider the following probabilistic model. Assume that for all 7,

o
Yi = W X; + €,

where w € R? is a fixed (unknown) vector, and {€1,...,€,} are statistically independent Gaus-
sian random variables such that

€ NN(O,U,,?)

where, o; > 0 is the standard deviation. The Maximum Likelihood Estimate (MLE) for this model
is defined as follows,

WMLE ‘— arg mvf}x P(Ul) 4ia e ,?/n|.771, «eeLp, 01, .- ,(Tn,W).



Exam 2019, Question 1.2

Recall that in class you have shown that if all ;’s are the same then solving the above MLE

problem is equivalent to minimizing the empirical risk arg min,, % i (wx; —y;)2.

It can be shown that minimizing the weighted empirical risk appearing in the previous problem
is equivalent to finding the MLE solution for an appropriate choice of 01, ..., 0,. What should
the relation be between o; and A; for this equivalence to hold?

2 I 3 o
&
%
o

Ai o< log(1 + (/0;)



Exam 2019, Question 1.2

First we reformulate the maximum likelihood estimate:

WMLE = argnlaxp(yla "'ay’n|xla ey Xn, 01, ...,O'n,W)
W

n n
44 argmax | | Py, o1, w) = argmalog | | Py, o0, w)
A%

o i=1

n n
= argmax Z logP(yi|x;i, 04, W) = argmin — Z log P (yi|xi, 04, W)
W

W =1 i=1



Exam 2019, Question 1.2

Next we look at our assumptions about the data:

We assume that y; = w'x; +¢ with ¢ ~N (0, Uz-z )

T 1 (— (WTxi_yi)z)

.. 42 =
Xi, 0F) = T D 27

== P(yiixiaaiaw) = N(yiaw

And from the last slide we know wppp = argming, — > | logP(y;|x;, 04, W)
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n
WM LE = argmin — Z logP(y;|x;, 03, W)
td i=1
. 1 (W' xi —y:)*
= argmin — lo exp(— -
gy z; g(mai p( 207 )
4 1 (w'x; — i)?

= argmin — lo
g Z( g( faz) 20

= argmm Z (w'x; —y;)?



Exam 2019, Question 1.2

So let's compare the maximum likelihood estimate to the weighted empirical risk:

g n 1 il e X2
WMLE = argming, — ) ;1 55(W ' X; — ;)
2

A

R(w) =Y s h(w'x; — y;)?

—2



Exam 2019, Question 1.3

In order to improve generalization properties of our model, we introduce a regularization term
to the training objective (same weights). This is especially beneficial when you have little data.
The cost function becomes,

e 1 n )

Ry(w) = — Z}(wai — )2 + 1C(w).

Two common candidates seen in the course are L; (Lasso) and Lo (Ridge) regularization. These
correspond to Cy(w) = ||w]||1, and Cy(w) = ||w||3 in the above formula (in place of C) respec-

tively.



Exam 2019, Question 1.3

(iii) Analytic solution for Ly (MC)
Please choose which of the following formulas corresponds to the closed form of the minimizer
of the R, (w) with C(w) = ||w]||1,
Ow=X"X+9I)"XTy
0w = (nI)/2(X" X)X (qI)!/%y
Ow=X"I+9D)X) X'y
X In general, there is no closed form. \/

...because ||w||1 is not differentiable!



Exam 2019, Question 1.4
R,,,(w) = Z Xi(w'x; —4i)? +nC(w)
with C(w) = ||w||; (Lasso) or C(w) = ||w||5 (Ridge)

(iv) Regularization limits (T/F)

Decide whether the following statements are true or false when n — oc:
True False

X [0  When C(w) = ||w||;, then the solution ||W||]o — 0.

O] X' When C(w) = ||w]||;, the regularization has no longer any effect on 0.
O X When C(w) = ||w||; or C(w) = ||w]||? the solution ||W||2 — cc.

OJ X  When C(w) = ||w||3 the regularization has no longer any effect on 0.



Exam 2019, Question 1.5

(v) Different Lo regularization (T/F)

Suppose we use the regularizer C(w) = ||w/||3 and optimize f?,,,l with a regularization constant
71 to get the minimizer wy, and R,, with a regularization constant 7> to get the minimizer wo.

We know that 79 and 7); are arbitrary and positive, and crucially,

2 > M.

Decide which of the following statements are true or false for all possible datasets {x;, y; }* ;:
True False

[Wall2 < [[W1l]2

The solution W is sparser than w

Solutions are the same, i.e. W; = Wy

There always exist 71, 12 s.t. 71 7# 72 and W} = Wo.

OD0OX
X X X [



Recap Kernels

T

= B
Perceptron: W = arg min — E max{0, —y;w’ x; }
W

n -
=
Fundamental insight: Optimal hyperplane lies in the
span of the data R s W, 13
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The ,Kernel Trick”

» Express problem s.t. it only depends on inner products
» Replace inner products by kernels

X;'FXJ' k(xi7 Xj)




Recap Kernels

Often k(x,x’) can be computed much more efficiently than ¢(x) ' ¢(x').
Here is a simple example of a polynomial kernel of degree 2:

Feature transformation: x = (z1,z3) — ¢(x) := (T%, Tg, V2x129)

Not kernelized: x'x’' — ¢(x)' ¢(x') = 222 + 23527 + 231202 7},

Kernelized: x'x' — k%) = (XTX’)2 = (z12] + ~L2~L'2)2



Examples of kernels on R?

o Linear kernel: k(x,x') = xx’

¢ Polynomial kernel: k(x,x') = (xTx’ ¥ 1)d
¢ Gaussian (RBF,
squared exp. kernel):  k(x,x’) = exp(—||x — x'||3/h*

N Q(N"l)
Bondwidh"/
/ — Lo”‘%ﬁ» YCD& ()WMCL’V
| X
¢ Laplacian kernel: k(x,x") = exp(—||x — x'|[1/h)
/lk,(/(l"(s

A

3 )
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Exam 2019, Question 2.1

(i) Kernelization (T/F)
Which of the following learning algorithms can be kernelized?

True False

Principal component analysis —  Lecture Slides: Dimensionality Reduction /, slides 6 - 12
Logistic regression ~ —  Lecture Slides: Kernels /, slides 34 - 37

K-Means Clustering —  Lecture Slides: Dimensionality Reduction /, slides 6 - 13

Nearest Neighbour Classification — See Kernel Nearest-Neighbor Algorithm, Yu et al. 2002

XX X X
Uil e e



Exam 2019, Question 2.2

(ii) Feature Maps (T/F)
From the lectures, we know that every kernel admits a feature representation in an inner product
space such that the kernel can be represented as inner product (for example; if the inner product
is in the Euclidean space, k(x,y) = ¢(x) " ¢(y)). Decide whether the following statements are
true or false.

[ X The feature map ¢ induced by a kernel k is always one-to-one.

X [0  The identity map ¢(z) = x defines the linear kernel.

X [J  The dimension of the Euclidean feature map ¢ induced by the cubic kernel k(x,y) =
(1 + x"y)? where x,y € R? grows at least at a polynomial rate in d.

X [0  The radial basis function kernel k(x,y) = exp(—||x — y||3) has an infinite-
dimensional feature map ¢.



Exam 2019, Question 2.2

True False
L] X  The feature map ¢ induced by a kernel £k is always one-to-one.

Consider the feature map x = (z1,z2) — ¢(x) := (2%, 23, V2z122),
induced by the kernel k(x,x’) = (x'x)2.
Therefore, the points x! = (1,1) and x? = (-1, —1) are transformed to

o(x!) = (1,1,4/2) = ¢(x?).



Exam 2019, Question 2.2

True False

X [J  The dimension of the Euclidean feature map ¢ induced by the cubic kernel k(x,y) =
(1 +x"y)? where x,y € R? grows at least at a polynomial rate in d.

~

The feature map induced by this kernel
= s ; 2 2 e .
= (15 s258) FP(X) = (L5 005050 Bl BL 50558 35 B 005 B g5 BB D1 L3y 55)

contains all monomials up to degree 3 in d variables.

d+n) _ (d+n)!

The number of monomials up to degree n in d variables is given by: ( i =

d+n) _ (d+3)! _ (d+3)(d+2)(d+1)d! _ (d+3)(d+2)(d+1)

= In our case: ( n ol = od = 5

= Growth rate: O(d®)



Kernel Definition

A kernel is a function £k : X x X — R satisfying
1) Symmetry: For any x,x’ € X it must hold that

kxx) =kx, %)

2) Positive semi-definiteness: For any n, any set

S = {x1,...,Xn} C X, the kernel (Gram) matrix
i i) .- El®.%)
B = .
(5 6 o ) (R . . THE. Sy

must be positive semi-definite



Kernel Definition

¢ Kernel function Lk :- X x X = R

» Take any finite subset of data S = {xq,...

¢ Then the kernel (gram) matrix

k(x1,x1) ... k(x1,Xn) d(x1)To(x1) ...
- = =]
k(xn: xl) .. k(xna Xn) (/)(X1L)T¢(xl) ..

is positive semidefinite

Because K = ® ' ® with ® = (d(x1), ..., P(Xn))

=VxeR":x'Kx=x"®"&x = (&x)'($x) =0

d(x1)" P(xn)

B ()T $(Xn)

|



Kernel Rules

Suppose we have two kernels

k’lt/YXX—)R :ICQI/YXX—}R

defined on data space X
Then the following functions are valid kernels:

k(x,x) = k1(x,x") + ko(x,x")
k(x, x') = bi(x, X ko, %)
klx,x') =ehkilsx) for e >0
k(x,x") = f(ki(x,x'))

where fis a polynomial with positive coefficients or
the exponential function



Exam 2019, Question 2.3

(iii) Valid Kernels (T/F)
Let z,y € R. Let kj(z,y) and kz(z,y) be any valid kernel functions on R x R. Consider the

definitions of the function f(z, y) below. For which of these definitions is f always a valid kernel
(True)?
Hint: cos(z + y) = cos(x) cos(y) — sin(z) sin(y)

True False

O X f(x,y) = cki(z,y)?ko(z,y) for any ¢ € R

X O f(z,y) =cos(z —y)

O M fley)= m;—y; assuming k) (z,y) > 0 forall z,y € R
X O f(zy) = (k(z,y) + k(z,y))’
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True False
O] X f(x,y) = cki(z,y)%ks(z,y) for any c € R

Because c needs to be bigger than Zero!

True False

X O f(zy) = (ki(z,y) + kao(z,9))?

= ki(z, y)ki(z,y) + 2k1(z, y)ka(z, y) + ka(z,y)ka(z, )



Exam 2019, Question 2.3

Hint: cos(z + y) = cos(z) cos(y) — sin(x) sin(y)
True False
X O  f(z,y) = cos(z — y)
= cos(x)cos(—y) — sin(z)sin(—y) = cos(xz)cos(y) + sin(x)sin(y)

= f(x,y) is symmetric

and ¢(z) = (cos(x), sin(x)) is the induced feature map.

= f(z,y) is a valid kernel.



Exam 2019, Question 2.4

(iv) Separable space (T/F)
Consider a dataset consisting of the following four pointsin R?: x! = [-1, —1]T,x% = [-1,1]T,x® =
[1,—1]T,x* = [1,1]". Class labels for each point are unknown, but assume that each point x
may belong to either of only two classes. You apply a feature transformation ®(-) to each point.
For which of the feature transformations below is the resulting dataset {®(x'), ®(x?), ®(x?), ®(x*)}
guaranteed to be linearly separable (with no point lying exactly on the decision boundary) for

every possible class labelling (True)?
Hint: Note that subscript denotes the coordinate in this question, and superscript identifies the

datapoint in the dataset.
° °

True False

®(x) = [x1, X2, 1]

d(x) = [x%,xg,xl,xz, 1]
P(x) = [x1, %2, %7 + x3,1]
B(x) = [x%, x5, xix3,X1, X3, 1] o .

X O OO
OX X X
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e T I_ls_l|T=X2 s I_lallTaX:3 = Ila _llTax/l = |l7 lIT

True False
] X d(x) = | %,x%,xl,x% 1]

For all 4 points it holds that: ®(x*) = [1,1,x1,X2, 1]

= Still not linearly separable!
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e T I—l,—lIT,X2 s I_lalthnx:3 = Ila _llTax/l = Il7 lIT

True False
] K ®(x)=[x1,%x2,x7 +x3,1]

For all 4 points it holds that: ®(x?) = [x1,X2,2,1]

= Still not linearly separable!
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= [=1, -] T = 0] = [, Tkt = (10T

True False . -
X O &x)=[x],x35,xixs5,X1,X3, 1]

For all 4 points it holds that: ®(x*) = [1,1, x1X2, X1, X2, 1]
= Look at: ®'(x?) = [x1X2, X1, X2]

— (I),(,xl) = l—_la_‘l-a_‘”)@’(xz) = l_laﬂla ]J7
®'(x?) = [-1,1,-1],®'(x?) = [1,1,1]

= Linearly separable!



Exam 2019, Question 2.5

(v) Decision Boundaries (Matching Question)

You have fitted the following four models to learn a classifier for a multi-class classification prob-
lem with three classes:

A. SVM with kernel k(x,y) =x'y

B. SVM with kernel k(x,y) = (7x"y +1)3

C. SVM with kernel k(x, y) = exp(— ||x — y|*)

D. Nearest neighbour classifier (with five neighbours and uniform weighting)

All SVMs use a one-vs-one approach for the multi-class classification and are fitted using the same
value for . The four figures below show the samples used for fitting all models and the decision
boundaries generated by each classifier. Match each model above with its corresponding figures.
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A. SVM with kernel k(x,y) =x 'y

B. SVM with kernel k(x,y) = ("yxTy +1)3

C. SVM with kernel k(x,y) = exp(—7 [|x — y||?)

D. Nearest neighbour classifier (with five neighbours and uniform weighting)

D. Nearest neighbour classifier

B. SVM with kernel k(x,y) = (vx "y + 1)3 A. SVM with kernel k(x,y) =x 'y C. SVM with kernel k(x,y) = exp(—7 [x — y||*)
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(vi) Consider the following function over real-valued scalars x and y:
k(z,y) = (1+ cxy)?,

where c is a positive constant. The basis function of this kernel represent the kernel as k(z,y) =
o(x) " ¢(y), where ¢(x) € R3. Given that ¢(x) = [1,*,cx?], derive the expression that falls
under the star.

o(x) " oy) = |1, *a, C$2]T[1a *ys Cyz] =14 %z %y +etzy”

k(z,y) = (1 + cxy)? = 1 + 2czy + Ax?y?

O(2) P(y) = k(T,y) = Hgry=2cxy = x5 =V2cx, %y = 2y

= ¢(z) = [1,4/2cx, cx?]



Coffee Break

It’s time for a coffee break, let’s have a cup of coffee.

9%

0
u We’ll Come Back After 15 Minutes




HW7 Question 13-15: Important Tipps

Expectation of a (discrete) Random Variable

Let X be a random variable with a finite number of finite outcomes 1, x1, ..., 3 occurring
with probabilities p1, po, . . ., Dk, respectively. The expectation of X is defined as

k
E[X] = Z%’pz‘ = T1p1 + XT2P2 + -+ + TPk
i=1



HW7 Question 13-15: Important Tipps

Jensen’s Inequality

If f is a convex function, we have
fE[X]) < E[f(X)]

Note that if X is constant we get an equality. Suppose we have f(2) = 2, which is a convex
function. Then, using Jensen’s Inequality, we have (E[X])? < E[X?], which you may recall
from the definition of Var(X). Moreover, if f is a concave function (e.g. f(x) = logz), we
reverse the inequality sign.



HW7 Question 13

In this question you will show that EM can be seen as an iterative algorithm which maximizes a lower bound on
the log-likelihood. We will treat any general model P(X, Z) with observed variables X and latent variable Z.
For the sake of simplicity, we will assume that Z is discrete and takes values in 1,2, ...,m. If we observe X, the

goal is to maximize the log-likelihood
1(0) = logP(x;0) = logXT: , P(x, 2; 0)
with respect to the parameter vector 0. QQ(Z) denotes any distribution over the latent variables.

13. For Q(z) > 0 when P(x,z) > 0, find a lower bound for the likelihood, I(#). Hint: Consider using the
Jensen’s inequality.

(a) EqllogP(X, Z)] — X371, Q(2)logQ(z)
(b) EqllogP(X, Z)] + ¥7%,Q(2)logQ(2)
(c) EqllogP(X, Z)]

(d) EqllogP(X, Z)] + 7%, Q(x)logQ(x)



HW7 Question 13
Pl®, 2 8)
Q(z)

9
o) = logz P(@, z:6) logz e, % = logEz o] |

Pz, 2;0)
Q(z)

= Bz ollogP(x, % 6)] — Ez-qllogQ(2)]

> Ez..gllog | =EzgllogP(z, z;0) — logQ(2)]

= EzgllogP(z, 2;0)] — Z Q(2)logQ(z) = (a) is the correct answer!

* Expectation ~ ** Jensen’s Inequality



HW7 Question 14

For a fixed 6, pick the distribution Q*(Z) which maximizes the lower bound derived in the previous question.
Show by yourself that bound is exact for this specific distribution. Hint: Do not forget to add Lagrange
multipliers to make sure that Q* is a valid distribution.

a) P(Z|x;0)
(Z;0)

(X|z;0)
(

X, Z;0)



HW7 Question 14

[ P(a;,z 0)

P(x,z;O)]
Q(z)

We start with: logEz g Q(z)

We know, from Jensens Inequality, that the equality holds if 2&29 is constant.
- Qz)

= Q*(2) = cP(x;2;0)

For some constant ¢ that does not depend on z

* Expectation ~ ** Jensen’s Inequality
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Additionally, we know that Q*(z) has to be a valid distribution: > Q*(z) =1

S0 .0\ — cP(zz0) _ cP(zz0) _  Px,z0) _ P(z,z0) _ ..
= Q(2) = cP(2,50) = T050) = SePGat) ~ SPw=0 ~ Paw) 1 (Z150)

z

= (a) is the correct answer!



HW7 Question 15

Mark the following statements True or False.

(a) Optimizing the lower bound on likelihood with respect to Q(.) is exactly the E—step.‘/

(b) Optimizing the lower bound on likelihood with respect to Q(.) is exactly the M-step.

(c) Optimizing the lower bound on likelihood with respect to 6 for fixed Q)(.) is exactly the E-step.

(d) Optimizing the lower bound on likelihood with respect to € for fixed Q(.) is exactly the M-step. \/
(e) The lower bound on likelihood monotonically increases after each step of optimisation. \/

(f) The lower bound on likelihood monotonically decreases after each step of optimisation.

There is a more detailed explanation in the CS229 lecture notes (Part IX, The EM Algorithm) by Andrew Ng:
(https://course.ccs.neu.edu/cs6220f16/sec3/assets/pdf/cs229-notes8. pdf)



