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Neural Network recap
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» Composed of modules called hidden layers

» Able to approximate non-linear functions
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A single Hidden Layer

Linear transformation followed by a non-linear "activation"
Bias

Activation Matrix Form
function
o—n ) - y = ¢(Wx + b)
Input k o(+) utput
gonals y
. Summing Scalar form
junction
() i = o3 xiwii + b)
Synaptic
weights

Haykin, Simon S., et al. Neural networks and learning machines. Vol. 3. Upper Saddle River: Pearson,
2009.
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Forward Pass

Consider a deep neural net with L layers

F(x, W) = (WO =D w0 M@y )
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Forward Pass

Consider a deep neural net with L layers

F(x, W) = (WO =D w0 M@y )

input layer

hidden layer 1 hidden layer 2

Why do we need non-linearities ¢?
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Forward Pass

Consider a deep neural net with L layers

F(x, W) = oBO(WB =D w1 - sOwlx) . )

input layer

hidden layer 1 hidden layer 2

Why do we need non-linearities ¢?

flinear(X; W) - W(L) W(L_l) . W(l)x = W*x
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Training Neural nets

Given
» labels y*, outputs y = f(x)
» loss function ¢(y*,y) on a single datapoint

Goal Minimize
LN
LW) = 5 2 1 yiW)

» Approximate L(W) by subsampling dataset (batches)
> Use gradient based optimization methods, e.g. SGD, ADAM

» Whew = Woig — ntaiWL( WO/d)
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Loss Functions: Regression

Labels: y* € R or y* € R
Output: Real-valued output (no activation)
Loss: e.g. L loss

oy, y) = ly* —yll3
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Loss Functions: Binary Classification

Labels: y* € {0,1}
Output: single output neuron y € R. Probability of class 1:

1
g =
14 e
Loss: Binary Cross Entropy Loss

€ (0,1)

Uy*,y) = —y"log(c) — (1 —y")log(l — o)
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Loss Functions: Multi-class Classification

Labels: y* "one-hot" in R¢
Output: y € RC. Softmax: probability of class i:

eyi

Zj e

oj =

Loss: Cross Entropy Loss
Uy*,y) == yi log(c))
i

See MNIST, CIFAR, ImageNet
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Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)
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Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)
Define network recursively:

v — ¢(Z(€))
2O — w0, (-1)

Where v(®) = x and v() = f(x)
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Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)
Define network recursively:

v — ¢(Z(€))
2O — w0, (-1)

Where v(®) = x and v() = f(x)

The gradient of the loss wrt an element of the k' hidden layer is

oL(w) oL avH 9z(b) ov(k) §z(k)
owf) vt 0200 vl T 0200 5, ()
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Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)
Define network recursively:

v — ¢(Z(f))
2O — w0, (-1)

Where v(9) = x and v(t) = f(x)

The gradient of the loss wrt an element of the k' hidden layer is

oL(w) oL avH 9z(b) vk 9z(k)
aw,f.k) — ovD) 9z(D) gy(L=1) " 9(k) aw,f.k)

oL(W
W ) SO
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Exam question

Exam 2016 Consider the following neural network with two logistic hidden units h;, hy, and three inputs 1,
Question 5 1y, 3. The output neuron f is a linear unit, and we are using the squared error cost function
E = (y — f)?. The logistic function is defined as p(z) = 1/ (1 + e~ 7).

(i) Consider a single training example @ = [21, z2, x3] with target output (label) y. Write down the
sequence of calculations required to compute the squared error cost (called forward propagation).
(ii) A way to reduce the number of parameters to avoid overfitting is to tie certain weights together,
so that they share a parameter. Suppose we decide to tie the weights w; and wy, so that w; =
wy = Wed. What is the derivative of the error E with respect to wyed, i.e. Vi, E?
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Exam question |: Forward Pass

Write down the sequence of calculations required to compute the
squared error cost (called forward propagation).

E=(y—f)?
f= U1h1 + U2h2
hi = p(wix1 + waxo + wsx3)

hy = p(wax1 + waxo + wex3)
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Exam question

Exam 2016 Consider the following neural network with two logistic hidden units h;, hy, and three inputs 1,
Question 5 1y, 3. The output neuron f is a linear unit, and we are using the squared error cost function
E = (y — f)?. The logistic function is defined as p(z) = 1/ (1 + e~ 7).

(i) Consider a single training example @ = [21, z2, x3] with target output (label) y. Write down the
sequence of calculations required to compute the squared error cost (called forward propagation).
(ii) A way to reduce the number of parameters to avoid overfitting is to tie certain weights together,
so that they share a parameter. Suppose we decide to tie the weights w; and wy, so that w;
Wy = Wyeq. What is the derivative of the error 2 with respect to wyeqd,

ie Vi, E?

Wried
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Exam question II: Backward Pass

First, let's define the linear part of the first hidden layer:

V1 = WiiegX1 + W3X2 + W5X3

Vo = WoX1 + WrjedX2 + WeX3

From I: E = (y — f)2, f = uiht + uzhy and hy = p(v1), h2 = p(v2)
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Exam question II: Backward Pass

First, let's define the linear part of the first hidden layer:

V1 = WiiegX1 + W3X2 + W5X3

Vo = WoX1 + WrjedX2 + WeX3

From I: E = (y — f)2, f = uiht + uzhy and hy = p(v1), h2 = p(v2)

OF _OE (0F Ol v Of Oh 0w,
8Wtied - 67‘ 8h1 0v1 8wt,-ed 8h2 8V2 aWt,'ed
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Exam question II: Backward Pass

First, let's define the linear part of the first hidden layer:

V1 = WiiegX1 + W3X2 + W5X3

Vo = WoX1 + WrjedX2 + WeX3

From I: E = (y — f)2, f = uiht + uzhy and hy = p(v1), h2 = p(v2)

OF _OE (0F Ol v Of Oh 0w,
8Wtied - 67‘ 8h1 0v1 8Wtied 8h2 8V2 awt,'ed

0E __ of __ ovi ohy
5F =2(f —y), oh = U1 and Bws = X1 gy is harder ..
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Exam question Il: Backward Pass cont.

oh _Op(v) 0 1

ov Ov  Ovl+4eV

0
=—(1+ e_")_za(l +e™)

=—(1+e ") *(~e)
1 eV
(I+ev)l+ev
= p(v)(1 = p(v))
= h(1—h)

OF _OE (Of Oh dwi_ Of Oy Ov,
aWt;ed - 8f ahl avl 8Wtied ahz 8V2 8Wtied

= 2(f — y) (Ulhl(]. — hl)Xl + U2h2(1 — h2)X2

)
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CNNs & Representation Learning

— BICYCLE

— carR
— TRUCK
— VAN
O O

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATIEN NNFerep SOFTMAX
FEATURE LEARNING CLASSIFICATION

» More layers — better representation

> Better representation — better accuracy

(Assuming you can optimize)
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ResNets: Problem setting

Is learning better networks as easy as stacking more layers?
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ResNets: Problem setting

Is learning better networks as easy as stacking more layers?
Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoging Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

56-layer

20-layer

56-layer

training error (%)
test error (%)

20-layer

* iter. (1e4) * iter. (led)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.
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ResNets: Problem setting

Is learning better networks as easy as stacking more layers?
Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoging Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

56-layer

S =

< 5

2 <

5, g 20-layer
2 56-layer S

£ g

B 20-layer

’ Citer (led) T er (led)
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

No! Adding more layers decreases accuracy for both test & train.
Why?
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Vanishing Gradients

What happens to the gradients if you build a very deep network?

oL(W) oL ovH 9zb) vk §z(k)
o~ 9D 920 D 920 5,
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Vanishing Gradients

What happens to the gradients if you build a very deep network?

oL(W) oL ovH 9zb) vk §z(k)
o~ 9D 920 D 920 5,

Causes of vanishing gradients
> Deep netse.g. k << L
» "Saturated" activations

» poor initialization, etc

Sigmoid ’ tanh ’ ReLU !
0'(.’1}) = .I_H% tanh(ﬂf) ° b maX(O, ZL')
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ResNets: Framework to train super deep networks

» Add skip connections

X
identity

» More stable gradients through
connections Fx) +x

» On |y chan ges the forward pass Figure 2. Residual learning: a building block.

Let H(x) = F(x) + x

0 0

A ResNet module F(x) need only model the residual H(x) — x
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Architecture

ResNets
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ResNets: Performance

o o
50 50
B0 Zw0
5 34-layer 5
0 20,
plain-18 ResNet-18’
—plain-34 L[ —ResNet:34 34-layer
R0 0 w0 50 R 0 20 W0 50

2 30 30

fer. (1e4) ier. (104)
Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.

method error (%)
Maxout [10] 9.38
model top-1 err. top-5 err. NIN [25] 8.81
VGG-16 [41] 28.07 9.33 DSN [24] 8.22
GoogLeNet [44] - 9.15 #layers | # params
PReLU-net [13] | 24.27 7.38 i I:'Nef[%ﬂ“] lg ;;x s-gi
- ighwa; \ . .54 (7.724+0.16)
plain-34 28541002 Pﬁihwa§[42,43] 32| 125M | 880
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46 ResNet 200} 021M ) 875
ResNet-34 C 24.19 7.40 ResNet 32| 046M | 751
ResNet 44 0.66M | 7.17
ResNet-50 22.85 6.71 ResNet 56 0.85M | 6.97
e - ResNet 10 | 17M | 643 6610.16)
- - - ResNet 1202 19.4M | 7.93
Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B Table 6. Classification error on the CIFAR-10 test set. All meth-
that only uses projections for increasing dimensions. ods are with data augmentation. For ResNet-110, we run it 5 times

and show “best (mean+std)” as in [43].
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Demo

» Training a ResNet requires a lot of resources

» But the model itself is small and can be loaded onto a laptops
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HW2: Problem 1

Solving for wys:

Rw) =" (vi- wal.>2 (1)
i=1

= (y = Xw) " (y — Xw) (2)

=w XTXw -2y "Xw +yTy (3)

Compute gradient:

R(w) = 2XTXw — 2XTy

gl

Set to O: .
W = (xTx) xTy
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HW?2: Problem 1 cont.

Let UZVT be the SVD of X. We need:
> U,V orthonormal Ul =u-t uTu=1
> (AB) ' =B"1A1
What is wgs?

wor = (X7X) 7 XTy (1)

(vzuTusz) vUuTy (2)
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HW2: Problem 3

The ridge penalty term, Aw " w
(a) shrinks the low variance components.

Y is a diagonal matrix that contains the singular values of X
» d; = Xj; correspond to the stddev of feature j

Wrigge = V (£2+ M) T XU Ty
Wols = VZ?lUTy
Since X is diagonal we can write:

XwWois = UZVTVZ_IUTY = UUTy = Z ujuJTy
J
d?

J T
d? + A

XW igge = UT (£2 + )\I)f1 YUy = Z uj u'y
J

See Elements of statistical learning p. 66 for more details.
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HW?2: Problem 10 Is the variance of w less than W/ jgg?

Define ¥, = (XTX + )\I). Y, is symmetric: [Z;l] T Z;\l

From 8: Var [w] = 02 (XTX)fl
From 9: Var [Wyigge] = 022;\1 (XTX) it

AVar = Var [w] — Var [Wyigge]

Var [w] = Var [Wyigge]| = AVar =0
A = 0 iff A is non-negative definite.
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HW2: Problem 10 cont.
Ty = (XTX+ Al
AVar = Var [w] — Var [Wigge] (1)
= [(XTX)_l -5t (x7x) z;l] 2)
e [zAle (xTx)f1 Dy -5 (XTX) z;] (3)
=5 5 (x7X) T m XX 5 (*)

r -1
= 25t [XTX 200+ 42 (XTX) = xTx] t(5)

[ -1
= o255t 2014 2% (X7X) ]z;l (6)
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