
IML tutorial 8
Joanna Ficek

8.04.2020

Outline

1. Technical considerations on data preprocessing (Project 2)
a. High-level approach
b. Missing data handling

2. Convolutional Neural Networks
a. Recap
b. Example exam questions
c. Transfer learning (demo)
d. Other applications

2

Project 2 data excerpt

3

Project 2: High-level approach

Data loading
Data can be first loaded for all patients using <pd.read_csv(“train_features.csv”)>, but should be
processed patient-by-patient for imputation and feature generation, and then assembled in training
matrices passed into Machine Learning Models.

Imputation
For a given patient, if some of your methods require fully-observed data (like a dense 12-hour
time-series), precompute imputed time series or partially imputed time series (in case they can accept
some missing values).

Feature generation
For a given patient, load the imputed data or real data (or a mixture thereof) and compute the feature of
your choice, that can capture the most relevant information across patient’s measurements.

4

Code snippet: data loading

5

Code snippet: data preprocessing

6

Code snippet: further steps

7

Missing values: mechanisms of missingness

● Missing Completely At Random (MCAR)
○ Mechanism of missing data is unrelated to the both the observed and the unobserved data.
○ Example: A person drops from a study on reading speed due to moving to another city.

● Missing At Random (MAR)
○ Mechanism of missingness depends only on the observed data.
○ Example: A person drops from a study on reading speed due to lack of time to practice and the

number of practice hours is also recorded.

● Not Missing At Random (NMAR)
○ Mechanism of missingness is related to the observed and unobserved values.
○ Example: A participant in a study on blood pressure skips a regular check-up because he is

feeling bad (possibly due to a too high blood pressure).

8

Missing values: mechanisms of missingness

● Missing Completely At Random (MCAR)
○ Mechanism of missing data is unrelated to the both the observed and the unobserved data.
○ Example: A person drops from a study on reading speed due to moving to another city.

● Missing At Random (MAR)
○ Mechanism of missingness depends only on the observed data.
○ Example: A person drops from a study on reading speed due to lack of time to practice and the

number of practice hours is also recorded.

● Not Missing At Random (NMAR)
○ Mechanism of missingness is related to the observed and unobserved values.
○ Example: A participant in a study on blood pressure skips a regular check-up because he is

feeling bad (possibly due to a too high blood pressure).

9

Missing values: how to proceed?

● Discard observations with any missing values (complete case analysis).
○

● Rely on the learning algorithm to deal with missing values in its training phase.
○

○

● Impute all missing values before training.
○

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 200110

Missing values: how to proceed?

● Discard observations with any missing values (complete case analysis).
○ Useful only if small fraction of missing values, otherwise information loss.

○ Can bias feature space.

● Rely on the learning algorithm to deal with missing values in its training phase.
○ Some algorithms allow missing observations, e.g. CART constructs “surrogate splits”.

○ In most cases not feasible.

● Impute all missing values before training.
○ Avoids information loss.

○ Increases uncertainty in estimates and predictions.

○ Introduces bias if MCAR mechanism not in place.
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining, Inference and Prediction. Springer, 200111

● Traffic jam data from São Paulo. link to data download

● Used in the context of air pollution.
● Available columns:

○ passage (str) - Name of the passage
○ direction (str)
○ type (str) - Indicates if the passage is an expressway (E)
○ region (str) - São Paulo region
○ timestamp (datetime) - When the traffic jam was measured (UTC-4)
○ jam_size (int) - Traffic jam in meters
○ segment (str) - Where the passage is located

Source: https://en.wikipedia.org/wiki/Transport_in_S%C3%A3o_Paulo

Imputation: a different perspective

12

https://www.kaggle.com/danlessa/sao-paulo-traffic-jams-since-2001
https://en.wikipedia.org/wiki/Transport_in_S%C3%A3o_Paulo

Data: Traffic jam data from a passage segment in São Paulo.

Task: Impute jam_size (to use it for prediction of air pollution).

Can we reformulate the task in the context of prediction?

Imputation: a different perspective

13

Task: Predict the jam_size for the next timestamp 2018-06-20.

Data: Traffic jam data from a passage segment in São Paulo.

Task: Impute traffic jam data (predictors’ values).

Can we reformulate the task in the context of prediction?

Imputation: a different perspective

14

Task: Predict all the missing values.

● Using summary statistics (mean/median/mode)

● Substitute with another observed value
(neighboring or chosen at random)

● Interpolation (linear, splines etc.)

Dataframe with predictors’ values.

Source: https://en.wikipedia.org/wiki/Linear_interpolation

Imputation: using observed values of the variable

● Using summary statistics (mean/median/mode)

15

https://en.wikipedia.org/wiki/Linear_interpolation

jam_size ~ timestamp + … + type

Dataframe with predictors’ values.

Imputation: based on other variables

● Regression imputation
○ Build a predictive model with the variable including

missing values as a dependent variable and use
remaining variables as predictors

○ Stochastic regression: add random noise
○ Bayesian regression: EM + draw parameters from

posterior distribution to generate missing values
○ Useful when dependency between features.

16

● Hot-deck imputation/matching imputation
○ Find cases with a highly similar profile in other variables

and use their value/summary of values to replace the
missing value.

○ How to find similar cases? E.g. using kNN

Data: Traffic jam data from a passage segment in São Paulo.

Task: Impute traffic jam data (predictors’ values).

Can we reformat the matrix to extract crucial information?

Imputation: very sparse matrix case

Yes, keeping all the data in a “raw format” for a downstream
analysis is not always necessary.

What would be the best way to summarize the sparse
information provided by the given variable?
Which part of the data can be summarized in another feature
and which should be kept in a “raw format”?

17

● Imputation allows for using all the data at hand (not only complete cases),
but may bias the results.

● Imputation increases uncertainty in estimates and predictions.
=> Multiple Imputation (repeat analysis for each imputed dataset)

● When imputing keep in mind bounds of the variable values.
● The choice of missing data handling method is context-specific and it’s

important to keep in mind the tradeoffs of different solutions.

Imputation: practical considerations

18

Note:

● Several advanced methods exist, but are beyond the scope of this lecture.
● Some considerations regarding missing data in the context of generative

modeling will be presented later in the lecture (not needed for Project 2!).

Other questions regarding Project 2?

=> please post on Piazza!

19

CNN: recap

● ANNs designed for specialized
high-dimensional data (images, time-series)

● Key ideas:
○ Robustness against small

transformations of the input
(exploitation of invariances)

○ Reduction of the number of parameters
by introducing weight sharing
=> more scalable
=> less prone to overfitting

20

Convolution operation: dot products
between filters and small input
regions.

Scalar non-linearities on top
(element-wise activation function).

Compute e.g. class scores.

Downsampling
operation
(max-pooling,
average pooling).

CNN: output dimensions

The output dimensions of each convolutional layer
are defined by the input size (N) and the hyperparameters:

● M: Number of filters used
● F: Size of filters used
● S: Stride (how many positions we move the filter at a time)
● P: Padding (pad input with zeros, often to preserve the input’s spatial size)

21Source: http://cs231n.github.io/convolutional-networks/

For this to happen, with S=1,
P=?

Output dim: L×L×M

From A. Karpathy example
showed in the lecture (link)

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

CNN: dimensions example

Consider a convolutional layer. The input consists of 6 feature maps of size
21×21. The output consists of 8 feature maps, and the filters are of size 5×5.
The convolution is done with a stride of 2 and zero-padding, so the output feature
maps are of size…?

10 x 10 (the total output dimension is 10 x 10 x 8)

What would be the size of the feature maps after applying a max-pooling layer on
top with F=2, S=2?

5 x 5 (the total output dimension is 5 x 5 x 8)

22Adapted from: University of Toronto Computer Science

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/exams/midterm_sol.pdf

CNN: dimensions example (solution)

Consider a convolutional layer. The input consists of 6 feature maps of size
21×21. The output consists of 8 feature maps, and the filters are of size 5×5.
The convolution is done with a stride of 2 and zero-padding, so the output feature
maps are of size…?

10×10 (the total output dimension is 10×10×8)

What would be the size of the feature maps after applying a max-pooling layer on
top with F=2, S=2?

5×5 (the total output dimension is 5×5×8)

23Adapted from: University of Toronto Computer Science

From A. Karpathy example
showed in the lecture (link)

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/exams/midterm_sol.pdf
http://cs231n.github.io/convolutional-networks/

CNN: #parameters example

Consider a convolutional layer. The input consists of 6 feature maps of size
21×21. The output consists of 8 feature maps, and the filters are of size 5×5.
The convolution is done with a stride of 2 and zero padding, so the output feature
maps are of size 10×10.

Number weights in convolutional layer:
There’s one filter for each pair of an input and output feature map, and the filters are
each 5×5. Therefore, the number of weights is 5×5×6×8 = 1200.

Number of weights if fully connected layer (input/output dimensions unchanged):
There are 21×21×6 units in the input layer and 10×10×8 units in the output layer, so
the number of weights is 21×21×6×10×10×8 = 2,116,800.

Adapted from: University of Toronto Computer Science 24

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/exams/midterm_sol.pdf

CNN: #parameters example (solution)

Consider a convolutional layer. The input consists of 6 feature maps of size
21×21. The output consists of 8 feature maps, and the filters are of size 5×5.
The convolution is done with a stride of 2 and zero padding, so the output feature
maps are of size 10×10.

Number weights in convolutional layer:
There’s one filter for each pair of an input and output feature map, and the filters are
each 5×5. Therefore, the number of weights is 5×5×6×8 = 1200.

Number of weights if fully connected layer (input/output dimensions unchanged):
There are 21×21×6 units in the input layer and 10×10×8 units in the output layer, so
the number of weights is 21×21×6×10×10×8 = 2,116,800.

Adapted from: University of Toronto Computer Science 25

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/exams/midterm_sol.pdf

CNN: characteristics example
Alice and Bob implemented two neural networks for recognizing handwritten digits
from 16×16 grayscale images. Each network has a single hidden layer, and makes
predictions using a softmax output layer with 10 units, one for each digit class.
● Alice’s network is a convolutional net. The hidden layer consists of three

16×16 convolutional feature maps, each with filters of size 5×5,
and uses the logistic nonlinearity. All of the hidden units are connected to all
of the output units.

● Bob’s network is a fully connected network with no weight sharing. The
hidden layer consists of 768 logistic units (the same number of units as
in Alice’s convolutional layer).

Explain one advantage of Alice’s approach and one advantage of Bob’s approach.
Source: University of Toronto Computer Science

26

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/practice_tests/midterm2015_2_solutions.pdf

CNN: characteristics example (solution)

The inputs to the convolution layer are a linear function of the images. In Bob’s
network, the hidden units can compute any linear function of the images; by
contrast, Alice’s convolutional layer is more restricted because of weight sharing
and local connectivity.

The advantage of Bob’s network is that it is more powerful, i.e. it can compute any
function Alice’s network can compute, plus some additional functions.
Advantages of Alice’s network include:

(a) It has fewer parameters, so it is less likely to overfit.
(b) It has fewer connections, so it requires fewer arithmetic operations to compute
the activations or the weight gradients.

Source: University of Toronto Computer Science
27

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/practice_tests/midterm2015_2_solutions.pdf

Transfer learning: idea

● Motivation: Large amount of training data required, but not always available
● Idea: pre-train the network on some larger dataset from a related domain
● Caveat: training networks with a lot of parameters on a large dataset can be

computationally very expensive
● Solution: Use a hidden layer from a large pretrained model and fine-tune

the network weights on the dataset at hand (backpropagate errors)

28

“In transfer learning, we first train a base network on a base dataset and task, and then we repurpose the
learned features, or transfer them, to a second target network to be trained on a target dataset and task.”

Yosinki et al., 2014

Transfer learning: scenarios with CNNs

● (Train available architecture from scratch*)

● Fine-tune the CNN
○ Fine-tune all weights or (more commonly) keep

initial layers fixed and fine-tune only later ones
○ Motivation: Features extracted earlier tend to be

more generic and later ones more task-specific

● CNN as fixed feature extractor
○ Remove the last Fully Connected layer
○ Treat the extracted features as fixed and add

a classifier on top

29

Source: towardsdatascience.com

*often the weights from a pre-trained model are still used for initialization

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

Transfer learning: guidelines
● Decisions should be based on dataset size, number of parameters and

similarity to the original dataset

30Source: towardsdatascience.com

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

Transfer learning: guidelines (2)
● Constraints from pretrained models

○ Less freedom in architectural choices.

● Learning rates
○ When fine-tuning use smaller learning rates.

● Fine-tune after training the layers added on top (source)
○ First train the network without unfreezing the layers
○ Then fine-tune the weights

31

Why? We expect the weights to be “good”, so we don’t want to “distort them too quickly”.

Why? Otherwise too large gradient updates may cause the model to “forget” the knowledge.

https://developers.google.com/machine-learning/practica/image-classification/exercise-3

Transfer learning: transferable features?

32

● Initializing a network with transferred features boosts generalization
● The effect persists even after substantial fine-tuning and holds for tasks

with different training objectives
● If no fine-tuning, there can be some performance degradation (specificity

of extracted features, optimization difficulties)

Leveraging pretrained models: demo

● Setting:
○ We train a dogs vs. cats classifier (on images)
○ We have only 3000 examples at hand (1500 per class)
○ We want to use a powerful Inception network to increase performance of our classificator

pre-trained on ImageNet dataset (1.4 mln images with 1000 categories)

● Demo: https://developers.google.com/machine-learning/practica/image-classification/exercise-3

33

https://developers.google.com/machine-learning/practica/image-classification/exercise-3

Inception network
● Very deep network
● Concatenation of different filters
● 1x1 convolution used for dim. reduction

and application of non-linearity

34Source: Szegedy et al., 2015 (github)

Source: Szegedy et al., 2014

https://github.com/tensorflow/models/tree/master/research/inception
https://arxiv.org/pdf/1409.4842v1.pdf

1×1 convolutions

● Dimensionality reduction
● Application of non-linearity
● Proposed in Network in Network

35

Source: tutorial by Andrew Ng

http://arxiv.org/abs/1312.4400
https://www.youtube.com/watch?v=vcp0XvDAX68

Pre-trained models

Great resource: https://keras.io/applications/

● Description of pre-trained models
(image classification task, trained on
ImageNet dataset)

● Easily accessible through Keras
● Examples how to use these models

(and tweak the options) are available
on the website

36

https://keras.io/applications/

CNN: various applications
● Image recognition
● Natural language processing
● Anomaly detection
● Drug discovery (e.g. protein-ligand scoring)
● Feature extraction and classification of time-series data
● Computer games (used by AlphaGo)

37Source: Ragoza et al., 2017 Source: Acharya et al., 2017 Source: Silver and Huang et al., 2016

https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.6b00740
https://www.sciencedirect.com/science/article/pii/S0010482517303153
https://www.nature.com/articles/nature16961

References
● Data formatting and missing data handling

○ Pandas tutorial (esp. Section 9 on reshaping pandas data frames)
○ Little and Rubin (2002) link
○ Gelman A., Hill J. (2017) link
○ Best N., Manson A. (2012) slides on Bayesian framework for imputation

● Convolutional Neural Networks
○ Stanford tutorial
○ Goodfellow et al. (2016) (Deep Learning book)

● Transfer learning
○ Stanford tutorial
○ Pan and Yang (2009)
○ Yosinki et al. (2014)
○ Google ML Practicum
○ Blogpost

38

https://www.datacamp.com/community/tutorials/pandas-tutorial-dataframe-python
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119013563
http://www.stat.columbia.edu/~gelman/arm/missing.pdf
http://www.bias-project.org.uk/Missing2012/Lectures.pdf
http://cs231n.github.io/convolutional-networks/
https://www.deeplearningbook.org/contents/convnets.html
https://cs231n.github.io/transfer-learning/
https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf
https://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf
https://developers.google.com/machine-learning/practica/image-classification/exercise-3
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

Thank you for your attention!

39

