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Entropy

Let p = (p1, ..., pr) be a distribution over k objects. The entropy of

p is defined as
k
H(p) == pilogpi.
i=1

There are several intuitions about (Shannon’s) entropy, most importantly

the compression idea, but we describe another interesting one.



Let X1, ..., X, be independent draws from the distribution p. Define
Y; = —logp(X;). It is easy to check that E[Y;| = H(p). We now use

gs)—l.

the law of large numbers:

n—oo

Ve > 0, lim]P’(

1 n
g;Yz—H(p)



But we know that

] — 1
_Z}/; — ——logp<X17 <. 7Xn>7
n n

i=1
resulting in

2—n(H—|—€) S p(Xh o 7Xn) S 2—n(H—5)7

with high probability!



Another way to state this is that

For large n, the distribution over sequences is like a uniform

distribution over Group A, and zero on Group B.

We call sequences in Group A, the “typical sequences”.



As an example, take a biased coin with distribution (%, i) We toss this
coin 1000 times. Now the “most probable outcome” of this experiment,
is the sequence of all heads. For this sequence we have %ZYZ =

1000 log( )10~ 0.125, but the entropy of the distribution is —2 log g—

}llog 7 ~ 0.811. These two numbers are far away, and this makes the

“all heads” sequence not a typical sequence.



One thing to keep in mind, is that the size of the typical set is determined
by entropy. The higher the entropy, the larger the set of typical sequences.
In the extreme case, if we have an unbiased coin, then every sequence
would be typical. By simple calculation, one can show that the size of

typical set is approximatly equal to 2"7(®) so
Entropy is a measure of the volume of the typical set,

another intuition!



Kullback-Leibler Divergence

Let = be a string of length n over the alphabet {1,... k}. For z we
can compute the frequencies of each alphabet letter and put all these
frequencies in a vector (py, ..., pr). We call this vector the “type of z”
and write it as P,. For example, if x = 1314231, and the alphabet is

{1,...,4}, then P, = (%, %, %, %)



Exercise 1. Show that the number of sequences having a certain

type P, is approzimately equal to 2~ (F),



Now take an arbitrary distribution () over the alphabet. The question
that we can ask now is what is the probability of observing a sequence
of type P under the assumption that the sequence is generated by Q).
Interestingly we can compute this probability and in the limit (n — o0)

the solution would be approximately equal to. ..



2-nKL(P|Q).

where
pz
L(P|Q) = Z pilog -

is called the Kullback-Leibler Dlvergence of P from Q).



As an example, let us say that we toss a fair coin 1000 times, and ask
what is the probability to get a sequence in which % of the outcomes are

heads and i of the outcomes are tails. We can see that

3. 3 1 1
KL((} DI(3:3) = {log 5 + 7 log 5 ~ 0.189,

and by the result above we see that the probability is about 2718 ~
107°.



This means that the higher the divergence of the “candidate distribution”
P and the “true distribution” @) gets, the lower would be the probability
of observing an outcome of P. That is why we can see the KL divergence

as a measure of “distance” between distributions.



Properties of KL Divergence
o Always KL(P||Q) > 0.
e For product distributions, KL is additive. That is,

KL(P; ® P[|Q1 ® Q2) = KL(P1]|@Q1) + KL(1%]| Q).

e The Pinsker Inequality:

drv(P,Q)* < 2KL(P|Q)



Application: Testing a Coin

We are given a coin, but we don’t know if it is biased or not. We only

know that the bias is either 1/2 or 1/2 + €.

Question 1. How many times we should toss this coin, so that we

can tell if it is the biased coin or not?



Let us denote by X = (Xi,...,X,,) the results of the tosses. Suppose

that we have a decision rule ¢ that
Y. X —{B,U}.
Then, the probability of 1) making a mistake is

Plertor] = £ o) # B] + 3 Pol(X) # U]



The following theorem tells us what is the best we can achieve:

Theorem 1. We have

inf{Pp(y(X) # B] + Pu[(X) # Ul} = 1 — drv(Pp, Py).



Proof. Let A C Q be the set {X : ¢(X) = B}. Note that a classifier

is identified by its acceptance set A. We have

PplY(X) # B] + Py[¢(X) # U] = Pp(A%) + Py(A)
=1-— ]PB(A) + IP)U(A)



Taking the infimum gives
inf{-- -} = igf{1 —P5(A) + Py(A)}
=1~ Sljlp(PB(m + Py (A))

=1 — dTV(]P)B7]P)U)'



Now using Pinsker inequality, we understand that the least probability

of error is bounded below by

1 — /2KL(Pg || Py).

Remains to compute the KL divergence. Note that both Py and Py are

product probability distributions.



Denote by pp the distribution of a single biased coin and py likewise.

Then

KL(Pp || Py) = n - KL(p5|/pv)




So for example, if we want to have Plerror] < 1/4, we should have

n= Qe ?).
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Entropy

Let p = (p1,...,pr) be a distribution over k objects. The entropy

of p is defined as
k
H(p)=—) pilogp;.
i=1

There are several intuitions about (Shannon’s) entropy, most impor-
tantly the compression idea, but we describe another interesting

one.



Let X1, ..., X, be independent draws from the distribution p. Define
Y; = —logp(X;). It is easy to check that Y; = H(p). We now use the

§5>—1.

law of large numbers:

n—0o0

Ve >0, lim ﬁl(
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E;Yi—ﬂ(p)



But we know that

] — 1
_Z}/; — ——logp<X17 <. 7Xn>7
n n

1=1

resulting in

oY) < p(Xy,..., X,) < 27H

— )

with high probability!



Another way to state this is that

For large n, the distribution over sequences is like a uni-

form distribution over Group A, and zero on Group B.

We call sequences in Group A, the “typical sequences”.



As an example, take a biased coin with distribution (%, ). We toss this

1
1
coin 1000 times. Now the “most probable outcome” of this experiment
1S

For this sequence we have 1 Y"Y; =

n

but the entropy of the distribution is —% log% — ilogi ~ (0.811.



One thing to keep in mind, is that the size of the typical set is deter-

mined by entropy.

By simple calculation, one can show that (Exercise) the size of typical

set is approximatly equal to 27(®) g0
Entropy is a measure of the volume of the typical set,

another intuition to keep in mind!



Kullback-Leibler Divergence

Let x be a string of length n over the alphabet {1,... k}. For x we
can compute the frequencies of each alphabet letter and put all these
frequencies in a vector (p1, ..., pr). We call this vector the type of x

and write it as P,.



Exercise 1. Show that the number of sequences having a certain type

P, is approzimately equal to 2~ "),



Now take an arbitrary distribution () over the alphabet.

Question 1. What is the probability of observing a sequence of type

P under the assumption that the sequence is generated by ().

Interestingly we can compute this probability and in the limit (n —

00) the solution would be approximately equal to. . .



2—nPQ

where .
i=1 g

is called the Kullback-Leibler Divergence of P from ().



As an example, let us say that we toss a fair coin 1000 times, and ask
what is the probability to get a sequence in which g of the outcomes

are heads and }l of the outcomes are tails. We can see that

(

oo

)5 3) = ,

N |[—

)

=
N[

)

and by the result above we see that the probability is about



This means that the higher the divergence of the “candidate distribu-
tion” P from the “true distribution” @) gets, the lower would be the
probability of observing an outcome of P. That is why we can see the

KL divergence as a measure of “distance” between distributions.



Properties of KL Divergence
o Always PQ > 0.
e For product distributions, KL is additive. That is,

P ® PQ1 ® Q2 = PG + PQs.

e The Pinsker Inequality:

P,Q* <2 PQ



Application: Testing a Coin

We are given a coin, but we don’t know if it is fair or not. We only

know that the bias is either 1/2 or 1/2 + €.

Question 2. How many times we should toss this coin, so that we

can tell if it is the biased coin or not?



Let us denote by X = (X7, ..., X,,) the results of the tosses. Suppose

that we have a decision rule 1) that
Y. X —{B,U}.
Then, the probability of 1) making a mistake is

lerror] = £ 95(X) # B+ S 5uu(X) £ U.



The following theorem tells us what is the best we can achieve:

Theorem 1. We have

igf *p(X) # B+ 9uy(X) #U =1 - 95,90



Proof. Let A C Q be the set X : ¢(X) = B.



Taking the infimum gives



Now we use Pinsker inequality:



Denote by pg the distribution of a single biased coin and py likewise.

Then

9590 = n - ppy



So for example, if we want to have qlerror] < 1/4, we should have

n= Qe ?).



Learned Concepts

1. Shannon Entropy
2. Typical Sequence

3. Kullback-Leibler Divergence

4. Total Variation Distance



After break

1. Cross-entropy Loss (CE)
2. Relation to MLE and KL
3. Demo for intuition

4. Handling imbalance with CE



Maximum Likelihood Estimation (Recap)

Predicted likelihood P(Y, X|w)
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MLE and Cross-entropy .
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KL divergence and Cross-entropy
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What will happen with CE loss for the data point x, if your model
predicts class c with O probability, while it actually pops up in
reality? Specifically,
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What will happen with CE loss for the data point x, if your model
predicts class c with O probability, while it actually pops up in
reality? Specifically,

f)(y = C‘CL’,U)) = Oa Ytrue — C

CE(x) will be infinitely small

CE(x) will be infinitely big

Eduapp
Houw Jﬁv i “b/\a* %w()f'\se?



CE into the wild (NN case)
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Why CE?
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Why CE?
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Visualization

https://www.desmos.com/calculator/zytm2sfb6e
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Weighted CE loss
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Learned Concepts

1. Basics of Information Theory
2. KL divergence and Cross-Entropy

3. Imbalance in data



Eduapp: the question



