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Correction of HW 1 on Moodle
• Question 14


• https://piazza.com/class/k6i4ygvjdai2re?cid=40

https://piazza.com/class/k6i4ygvjdai2re?cid=40


Today’s Tutorial
• A recap on recent lectures regarding regression


• More in-depth demos based on Prof. Krause’s demos


• Also a bit about python usage


• Please only ask questions about this tutorial


• Unless you think it is relevant enough and I can definitely answer it :)
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• Model:  ̂y = w1x1 + w2x2 + … + wd−1xd−1 + w0
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Linear Regression
• Model:   

• OR: , 


• Data distribution: 


• e.g. , ; e.g. 


• True risk of model : 


• Data is usually infinite. How to estimate the true risk?
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Monte Carlo Estimation
• Given a function  and a distribution  in a domain , estimate 




•  


•  are i.i.d. samples from distribution 


• This estimate is unbiased: 

f( ⋅ ) p( ⋅ ) Ω
𝔼X∼p[ f(X)]

𝔼X∼p[ f(X)] = ∫Ω
f(x)p(x) dx ≈

1
N

N

∑
i=1

f(x(i))

x(i) p

𝔼x(i)∼p[
1
N

N

∑
i=1

f(x(i))] = ∫Ω
f(x)p(x) dx
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Monte Carlo Estimation
• In general, to estimate integral 


• Use samples from distribution  


•



•  instead of  


• Unbiased if  is non-zero wherever  is non-zero

∫Ω
f(x) dx

q( ⋅ )

∫Ω
f(x) dx ≈

1
N
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∑
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f(x(i))
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x(i) ∼ q p
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Image credit: Wojciech Jarosz



Monte Carlo Estimation
•  


• Can also use another distribution  


•



•  instead of  


• Unbiased if  is non-zero wherever  is non-zero

𝔼X∼p[ f(X)] = ∫Ω
f(x)p(x) dx ≈

1
N

N

∑
i=1

f(x(i))

q( ⋅ )

∫Ω
f(x)p(x) dx = ∫Ω

f(x)
p(x)
q(x)

q(x) dx ≈
1
N

N

∑
i=1

f(x(i))
p(x(i))
q(x(i))

x(i) ∼ q p

q(x) f(x)p(x)
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Linear Regression
• Hence we can use a finite dataset to estimate true risk 


• 


• Dataset: , , i.i.d. data examples 


• Empirical risk of model  on :  


• Unbiased estimate of  if we only use it to evaluate  

• But we want to find a good model  with  (training)!

R(w)

R(w) = 𝔼P(x,y)
[(y − wTx)2]

D = {(xi, yi)}N
i=1 D ∼ PD (xi, yi) ∼ P(x, y)

w D R̂D(w) =
1
N

N

∑
i=1

(yi − wTxi)2

R(w) w

w D



Closed-form solution
• 


• , 


• Reformulate: , usually over-constrained ( )


•  Least squares!

ŵ = arg min
w

N

∑
i=1

(yi − wTxi)2 ⟹ ŵ = (XTX)−1XTy

X = [x1, x2, …, xN]T ∈ ℝN×d y = [y1, y2, …, yN]T ∈ ℝN

y = Xw N ≫ d

⟹
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Non-linear Features
• , 


•  is nonlinear: 


• e.g.  


• Can lead to better models if a good  is selected


• Worse models when picking a bad one :/ 


• Also, tricky to pick the “just right” ones

y = wTx → y = vTϕ(x) w ∈ ℝm, v ∈ ℝn

ϕ(x) ℝm → ℝn

x = [x1, x2, x3]T, ϕ(x) = [1,x1, x2
1 , x2

2 x3, ln 5x3, ex2−x1]T

ϕ( ⋅ )
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Which Models Are Better?
• The models  with lower true risk  

• Under-fitting: not enough capacity


• Over-fitting: too much capacity —> fitting the noise!


• Good model: neither under-fitting nor over-fitting

w R(w)
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Training/Testing Split
• Empirical risk  usually underestimate true risk 


• 


• “Too optimistic” about the model


• OR: the model only performs well on training data


• Unbiasedly estimate the true risk: random test set


•

R̂D(ŵD) R(ŵD)

𝔼D[R̂D(ŵD)] ≤ 𝔼D[R(ŵD)]

𝔼Dtest
[R̂Dtest

(ŵDtrain
)] = R(ŵDtrain

)
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Validation and Testing Sets?
• If we use only the training/testing split, we can overfit the testing set


• 


• Do not select the model based on test set


• Validation set = reserve part of training set for model selection


• Actually the “test set” before is a validation set


• Cross-validation = avoid bias of the validation set selection

R̂Dtest
(ŵDtrain

) ≠ R(ŵDtrain
)



Cross-validation
• Demo: k-fold CV for model selection

Image credit: sklearn

https://scikit-learn.org/stable/modules/cross_validation.html


Regularization
• “Our models cannot be that complex, those large weights can only come 

from noise”


•  Penalize large weights in the loss functions⟹



Regularization
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• Linear regression: 
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Regularization
• 


• Linear regression: 


• Ridge ( ): , has closed form solution

min
w

R̂D(w) + λC(w)

R̂D(w) =
1
N

N

∑
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(yi − wTx)2

L2 C(w) = ∥w∥2
2 =

d

∑
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w2
k



Regularization
• 


• Linear regression: 


• Ridge ( ): , has closed form solution


• Lasso ( ): , doesn’t have closed form solution

min
w

R̂D(w) + λC(w)

R̂D(w) =
1
N

N

∑
i=1

(yi − wTx)2

L2 C(w) = ∥w∥2
2 =

d

∑
k=1

w2
k

L1 C(w) = ∥w∥1 =
d

∑
k=1

|wk|



Lasso Leads to Sparsity

Image credit: link

https://medium.com/towards-artificial-intelligence/how-regularization-can-help-in-overfitting-the-data-ad9ff80f9ccc
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Standardization
• The “small-weight” idea only applies when the data is standardized 


• e.g.  is income ( ),  is altitude ( ),  is height ( )


• Originally 


• Penalize  and get  


•  will be useless!

x1 104 x2 103 x3 100

w1 = 0.1,w2 = 2,w3 = 2000

∥w∥2
2 w1 = w2 = w3 = 1

x3



Standardization
• The “small-weight” idea only applies when the data is standardized 


• e.g.  is income ( ),  is altitude ( ),  is height ( )


• Penalize  and get  


•  will be useless!


• Standardize when using regularization: 

x1 104 x2 103 x3 100

∥w∥2
2 w1 = w2 = w3 = 1

x3

x̃ij =
xij − ̂μj

̂σj



End of Presentation 
Beginning of Q&A
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