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Correction of HW 1 on Moodle

e Question 14

e https://piazza.com/class/k6i4ygvijdai2re?cid=40



https://piazza.com/class/k6i4ygvjdai2re?cid=40

Today’s Tutorial

* A recap on recent lectures regarding regression

 More in-depth demos based on Prof. Krause’s demos
* Also a bit about python usage

* Please only ask questions about this tutorial

* Unless you think it is relevant enough and | can definitely answer it :)
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Linear Regression

* Model: y = wix; +woxo + ... + WX, + W

T I
X, W= [W(), WI’WZ’ ""Wd—l] , X = [1,x1,x2, ...,xd_l]T

* OR:y=wW
* Data distribution: (x;, y;,) ~ P (X,y)

. eg.y=u'x+e¢ e~ NO,1);eqg.y~ Nx|, c°)

* True risk of model w: R(w) = [ P(x,y)[(y — w!x)?]

e Data is usually infinite. How to estimate the true risk?
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Monte Carlo Estimation

 Given a function f( - ) and a distribution p( - ) in a domain €2, estimate

= x~plJ(X)]

] & |
= L)) = J fp() dx ~ — ) fx?)
Q N i=1

. xWarei.id. samples from distribution p

l -
* This estimate Is unbiased: = mpl = Z F(xW)] = J f(x)p(x) dx
N i=1 €



Monte Carlo Estimation

* In general, to estimate integral J f(x) dx
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 Use samples from distribution g( - )
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Monte Carlo Estimation

* In general, to estimate integral J f(x) dx
Q

 Use samples from distribution g( - )

L ¢ f6?)
. J'Q f(x) dx =~ N £ q(x(l))

. xW ~ g instead of p

- Unbiased if g(x) is non-zero wherever f(x) is non-zero
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Image credit: Wojciech Jarosz



Monte Carlo Estimation

1 &
By, [fX)] = L oo 5 3

+ Can also use another distribution g( - )

_ p(x) LR\
. L fOp(x) dx —[ f)=—=q(0) dx ~ — Z} flx

(i))p (x(i))
O q(x)

qg(x")

. xW ~ g instead of p

- Unbiased if g(x) is non-zero wherever f(x)p(x) is non-zero
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Linear Regression

» Hence we can use a finite dataset to estimate true risk R(w)

* Rw)=Ep_ [(y = w'x)’]

© Dataset: D = {(x,, yi)}i.\il, D ~ Pj, i.i.d. data examples (X, y;) ~ P(X, )

. . > I T \2
" Empirical risk of model w on D: R(W) = ~ Z (v; — W' X))
i=1

» Unbiased estimate of R(w) if we only use it to evaluate w

« But we want to find a good model w with D (training)!



Closed-form solution

N
* W = arg min Z (v, —wix)* = w=X'X)" X"y
Y=l

NXxd

o X:[XI,X2,...,XN]T€\. ,y=[y1,y2,...,yN]T€\.

» Reformulate: y = Xw, usually over-constrained (N > d)

« —> [ east squares!
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Gradient Descent

d

¢ W, € [R™: initialization
¢ W =W,_| — ntVIA{(Wt): update at step r = 1,2,3,...

« Convex function: convergence guaranteed for small #,

large 1 small 7
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Non-linear Features

. y:WTx—>y=VTgb(X),WEL "veR"

m n

e ¢(X) is nonlinear: R — [

2 .2

¢ .9. X =[x}, X, x3]T, P(xX) = [1,x), x7, x5%3, In Sx5, el

 Can lead to better models if a good ¢( - ) is selected

 Worse models when picking a bad one :/

* Also, tricky to pick the “just right” ones
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Which Models Are Better?

The models w with lower true risk R(w)
Under-fitting: not enough capacity
Over-fitting: too much capacity —> fitting the noise!

Good model: neither under-fitting nor over-fitting



Training/Testing Split

. Empirical risk R,(W;,) usually underestimate true risk R(W,)

° _D[IAQD(WD)] < ‘D[R(VAVD)]




What if we evaluate performance on training data?

Wp = argmin Rp(w) w* = argmin R(w)

W

¢ In general, it holds that [ -RD(WD) < Ep|R(Wp)

ﬂ_:,b;\ﬁ (%)JEKM[E l\““;n ﬁ(wf < e Eb[ qb[w)]

W . L_Kr/'-\/\._—'—f
, )
= V‘C’\ R(h/) < RED(R (\JQ)} R Al

¢ Thus, we obtain an overly optimistic estimate!

24



Training/Testing Split

. Empirical risk R,(W;,) usually underestimate true risk R(W,)

° _D[IAQD(WD)] < ‘D[R(VAVD)]

* “Too optimistic” about the model
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Training/Testing Split

. Empirical risk R,(W;,) usually underestimate true risk R(W,)

° _D[IAQD(WD)] < ‘D[R(VAVD)]

e “Too optimistic” about the model
* OR: the model only performs well on training data

 Unbiasedly estimate the true risk: random test set

’ _Dtest[ﬁDtest(WD )] = R(WD )

rrain rrain




Validation and Testing Sets?

* |[f we use only the training/testing split, we can overfit the testing set

° RD test(‘s\vD tmin) # R(WD tmin)



Validation and Testing Sets?

* |[f we use only the training/testing split, we can overfit the testing set

A\

e Ry (Wp ) #R(wp )

test trrain train
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Validation and Testing Sets?

If we use only the training/testing split, we can overfit the testing set

A\

e Ry (Wp ) #R(wp )

test trrain train

Do not select the model based on test set
Validation set = reserve part of training set for model selection
* Actually the “test set” before is a validation set

Cross-validation = avoid bias of the validation set selection



Cross-validation

Split 1
Split 2
Split 3
Split 4

Split 5

Demo: k-fold CV for model selection

All Data
Training data Test data
Foldl | Fold2 || Fold3 || Fold4 || Fold5 |\
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
| > Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Foldl1 | Fold2 | Fold3 | Fold4 | Fold5 @/

Final evaluation =

Test data

“~

Image credit: sklearn



https://scikit-learn.org/stable/modules/cross_validation.html

Regularization

* “Our models cannot be that complex, those large weights can only come
from noise”

« — Penalize large weights in the loss functions



Regularization
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Regularization

. min R (W) + 1C(w)

A I <
o | | - . _ T 2
Linear regression: R (W) = ~ i:EI (v; — W' X)

d
+ Ridge (L,): C(w) = ||w]|5 = Z wZ, has closed form solution
k=1

d
+ Lasso (L): C(w) = ||w]|, = Z lw,|, doesn’t have closed form solution
k=1



Lasso Leads to Sparsity

contours of RSS as
it move away from
the minimum

‘
B, $ A® B, ¢ n®
| RSS (Least Square) 2]
coefMiclents
The lasso coefliclents |
“\ The ridge regression

coefficients

- -

25 B, A P,

The penalty term (budget)
shown as a constraint region

LASSO RIDGE REGRESSION

Image credit: link


https://medium.com/towards-artificial-intelligence/how-regularization-can-help-in-overfitting-the-data-ad9ff80f9ccc

Standardization

 The “small-weight” idea only applies when the data is standardized
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Standardization

The “small-weight” idea only applies when the data is standardized
e.g. X; is income (10%), X, is altitude (107, X5 is height (10Y)
Originally w; = 0.1,w, = 2,w,; = 2000

Penalize ||WH% and getw; =w, = w; = 1

X3 Will be useless!



Standardization

The “small-weight” idea only applies when the data is standardized
e.g. Xy is income (10%), X, is altitude (107, X5 is height (10Y)
Penalize || w||5 and get w; = w, = w; = 1

X3 Will be useless!

-+ Standardize when using regularization: 56'1-]- — A



End of Presentation
Beginning of Q&A
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