Correction of HW 1 on Moodle

• Question 14

• https://piazza.com/class/k6i4ygvjda1rei2re?cid=40
Today’s Tutorial

• A recap on recent lectures regarding regression

• More in-depth demos based on Prof. Krause’s demos
 • Also a bit about python usage

• Please only ask questions about this tutorial
 • Unless you think it is relevant enough and I can definitely answer it :)}
Linear Regression

• Model: $\hat{y} = w_1x_1 + w_2x_2 + \ldots + w_{d-1}x_{d-1} + w_0$
Linear Regression

• Model: \(\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0 \)

• OR: \(\hat{y} = w^T x, \ w = [w_0, w_1, w_2, \ldots, w_{d-1}]^T, \ x = [1, x_1, x_2, \ldots, x_{d-1}]^T \)
Linear Regression

• Model: $\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0$

• OR: $\hat{y} = w^T x$, $w = [w_0, w_1, w_2, \ldots, w_{d-1}]^T$, $x = [1, x_1, x_2, \ldots, x_{d-1}]^T$

• Data distribution: $(x_i, y_i) \sim P_{(x,y)}$

 • e.g. $y = u^T x + \epsilon$, $\epsilon \sim N(0,1)$; e.g. $y \sim N(\|x\|_2, \sigma^2)$
Linear Regression

- Model: \(\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0 \)

- **OR:** \(\hat{y} = w^T x, \ w = [w_0, w_1, w_2, \ldots, w_{d-1}]^T, \ x = [1, x_1, x_2, \ldots, x_{d-1}]^T \)

- Data distribution: \((x_i, y_i) \sim P_{(x,y)}\)
 - e.g. \(y = \mathbf{u}^T x + \epsilon, \ \epsilon \sim N(0,1); \) e.g. \(y \sim N(\|x\|_2, \sigma^2) \)

- **True risk** of model \(w: R(w) = \mathbb{E}_{P_{(x,y)}}[(y - w^T x)^2] \)
Linear Regression

• Model: \(\hat{y} = w_1x_1 + w_2x_2 + \ldots + w_{d-1}x_{d-1} + w_0 \)

• OR: \(\hat{y} = \mathbf{w}^T \mathbf{x} \), \(\mathbf{w} = [w_0, w_1, w_2, \ldots, w_{d-1}]^T \), \(\mathbf{x} = [1, x_1, x_2, \ldots, x_{d-1}]^T \)

• Data distribution: \((\mathbf{x}_i, y_i) \sim P(x,y) \)

 • e.g. \(y = \mathbf{u}^T \mathbf{x} + \epsilon, \epsilon \sim N(0,1) \); e.g. \(y \sim N(\|\mathbf{x}\|_2, \sigma^2) \)

• **True risk** of model \(\mathbf{w} \): \(R(\mathbf{w}) = \mathbb{E}_{P(x,y)} [(y - \mathbf{w}^T \mathbf{x})^2] \)

• Data is usually infinite. How to **estimate** the true risk?
Monte Carlo Estimation

- Given a function $f(\cdot)$ and a distribution $p(\cdot)$ in a domain Ω, estimate $\mathbb{E}_{X \sim p}[f(X)]$.
Monte Carlo Estimation

- Given a function $f(\cdot)$ and a distribution $p(\cdot)$ in a domain Ω, estimate $\mathbb{E}_{X \sim p}[f(X)]$

$$
\mathbb{E}_{X \sim p}[f(X)] = \int_{\Omega} f(x)p(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})
$$

- $x^{(i)}$ are i.i.d. samples from distribution p
Monte Carlo Estimation

- Given a function \(f(\cdot) \) and a distribution \(p(\cdot) \) in a domain \(\Omega \), estimate \(\mathbb{E}_{X \sim p}[f(X)] \)

- \(\mathbb{E}_{X \sim p}[f(X)] = \int_{\Omega} f(x)p(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \)

- \(x^{(i)} \) are i.i.d. samples from distribution \(p \)

- This estimate is **unbiased**: \(\mathbb{E}_{x^{(i)} \sim p}[\frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})] = \int_{\Omega} f(x)p(x) \, dx \)
Monte Carlo Estimation

- In general, to estimate integral $\int_{\Omega} f(x) \, dx$
- Use samples from distribution $q(\cdot)$

$$\int_{\Omega} f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x^{(i)})}{q(x^{(i)})}$$
- $x^{(i)} \sim q$ instead of p
Monte Carlo Estimation

• In general, to estimate integral \(\int_{\Omega} f(x) \, dx \)

• Use samples from distribution \(q(\cdot) \)

\[
\int_{\Omega} f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x^{(i)})}{q(x^{(i)})}
\]

• \(x^{(i)} \sim q \) instead of \(p \)

• Unbiased if \(q(x) \) is non-zero wherever \(f(x) \) is non-zero
Monte Carlo Estimation

- \[\mathbb{E}_{X \sim p}[f(X)] = \int_{\Omega} f(x)p(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \]

- Can also use another distribution \(q(\cdot) \)

- \[\int_{\Omega} f(x)p(x) \, dx = \int_{\Omega} f(x) \frac{p(x)}{q(x)} q(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \frac{p(x^{(i)})}{q(x^{(i)})} \]

- \(x^{(i)} \sim q \) instead of \(p \)

- Unbiased if \(q(x) \) is non-zero wherever \(f(x)p(x) \) is non-zero
Hence we can use a finite dataset to estimate true risk $R(w)$

\[R(w) = \mathbb{E}_{P_{(x,y)}}[(y - w^T x)^2] \]
Linear Regression

- Hence we can use a finite dataset to estimate true risk $R(w)$

 - $R(w) = \mathbb{E}_{P_{(x,y)}}[(y - w^T x)^2]$

- Dataset: $D = \{(x_i, y_i)\}_{i=1}^N$, $D \sim P_D$, i.i.d. data examples $(x_i, y_i) \sim P(x, y)$

- **Empirical risk** of model w on D: $\hat{R}_D(w) = \frac{1}{N} \sum_{i=1}^N (y_i - w^T x_i)^2$
Linear Regression

• Hence we can use a finite dataset to estimate true risk $R(w)$

 • $R(w) = \mathbb{E}_{P(x,y)}[(y - w^T x)^2]$

• Dataset: $D = \{(x_i, y_i)\}_{i=1}^N, D \sim P_D$, i.i.d. data examples $(x_i, y_i) \sim P(x, y)$

• **Empirical risk** of model w on D: $\hat{R}_D(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x_i)^2$

• Unbiased estimate of $R(w)$ if we only use it to evaluate w

 • But we want to find a good model w with D (training)!
Closed-form solution

\[\hat{w} = \arg \min_w \sum_{i=1}^N (y_i - w^T x_i)^2 \implies \hat{w} = (X^T X)^{-1} X^T y \]

- \(X = [x_1, x_2, \ldots, x_N]^T \in \mathbb{R}^{N \times d}, \ y = [y_1, y_2, \ldots, y_N]^T \in \mathbb{R}^N \)

- Reformulate: \(y = Xw \), usually over-constrained \((N \gg d) \)

- \(\implies \) Least squares!
Gradient Descent

- $w_0 \in \mathbb{R}^d$: initialization

- $w_t = w_{t-1} - \eta_t \nabla \hat{R}(w_t)$: update at step $t = 1, 2, 3, \ldots$
Gradient Descent

- \(\mathbf{w}_0 \in \mathbb{R}^d \): initialization

- \(\mathbf{w}_t = \mathbf{w}_{t-1} - \eta_t \nabla \hat{R}(\mathbf{w}_t) \): update at step \(t = 1, 2, 3, \ldots \)

- Convex function: convergence guaranteed for small \(\eta_t \)
Gradient Descent

- \(w_0 \in \mathbb{R}^d \): initialization

- \(w_t = w_{t-1} - \eta_t \nabla \hat{R}(w_t) \): update at step \(t = 1, 2, 3, \ldots \)

- Convex function: convergence guaranteed for small \(\eta_t \)
Non-linear Features

\[y = w^T x \rightarrow y = v^T \phi(x), \ w \in \mathbb{R}^m, \ v \in \mathbb{R}^n \]
Non-linear Features

- $y = w^T x \rightarrow y = v^T \phi(x)$, $w \in \mathbb{R}^m, v \in \mathbb{R}^n$

- $\phi(x)$ is nonlinear: $\mathbb{R}^m \rightarrow \mathbb{R}^n$

- e.g. $x = [x_1, x_2, x_3]^T$, $\phi(x) = [1, x_1, x_1^2, x_2^2 x_3, \ln 5 x_3, e^{x_2-x_1}]^T$
Non-linear Features

- $y = w^T x \rightarrow y = v^T \phi(x), \ w \in \mathbb{R}^m, \ v \in \mathbb{R}^n$

- $\phi(x)$ is nonlinear: $\mathbb{R}^m \rightarrow \mathbb{R}^n$

- e.g. $x = [x_1, x_2, x_3]^T, \ \phi(x) = [1, x_1, x_1^2, x_2^2x_3, \ln 5x_3, e^{x_2-x_1}]^T$

- Can lead to better models if a good $\phi(\cdot)$ is selected
Non-linear Features

- \(y = w^T x \rightarrow y = v^T \phi(x), \ w \in \mathbb{R}^m, \ v \in \mathbb{R}^n \)

- \(\phi(x) \) is nonlinear: \(\mathbb{R}^m \rightarrow \mathbb{R}^n \)

- e.g. \(x = [x_1, x_2, x_3]^T, \ \phi(x) = [1, x_1, x_1^2, x_2^2 x_3, \ln 5x_3, e^{x_2-x_1}]^T \)

- Can lead to better models if a good \(\phi(\cdot) \) is selected
 - Worse models when picking a bad one :/
 - Also, tricky to pick the “just right” ones
Which Models Are Better?

- The models w with lower true risk $R(w)$
Which Models Are Better?

- The models w with lower true risk $R(w)$
- Under-fitting: not enough capacity
- Over-fitting: too much capacity \rightarrow fitting the noise!
Which Models Are Better?

- The models \(w \) with lower true risk \(R(w) \)
- Under-fitting: not enough capacity
- Over-fitting: too much capacity \(\rightarrow \) fitting the noise!
- Good model: neither under-fitting nor over-fitting
Training/Testing Split

- Empirical risk $\hat{R}_D(\hat{w}_D)$ usually underestimate true risk $R(\hat{w}_D)$

- $\mathbb{E}_D[\hat{R}_D(\hat{w}_D)] \leq \mathbb{E}_D[R(\hat{w}_D)]$
What if we evaluate performance on training data?

\[\hat{w}_D = \arg\min_w \hat{R}_D(w) \quad w^* = \arg\min_w R(w) \]

- In general, it holds that
 \[\mathbb{E}_D \left[\hat{R}_D(\hat{w}_D) \right] \leq \mathbb{E}_D \left[R(\hat{w}_D) \right] \]

 \[
 \mathbb{E}_D \left[\hat{R}_D(w_0) \right] = \min_w \mathbb{E}_D \left[\hat{R}_D(w) \right] \leq \min_w \mathbb{E}_D \left[R(w) \right] \\
 = \min_w R(w) \leq \mathbb{E}_D \left[R(w_0) \right]
 \]

- Thus, we obtain an overly optimistic estimate!
Training/Testing Split

- Empirical risk $\hat{R}_D(\hat{w}_D)$ usually underestimate true risk $R(\hat{w}_D)$

- $\mathbb{E}_D[\hat{R}_D(\hat{w}_D)] \leq \mathbb{E}_D[R(\hat{w}_D)]$

- "Too optimistic" about the model

- OR: the model only performs well on training data
Training/Testing Split

• Empirical risk $\hat{R}_D(\hat{w}_D)$ usually underestimate true risk $R(\hat{w}_D)$

• $\mathbb{E}_D[\hat{R}_D(\hat{w}_D)] \leq \mathbb{E}_D[R(\hat{w}_D)]$

• “Too optimistic” about the model

 • OR: the model only performs well on training data

• Unbiasedly estimate the true risk: random test set

• $\mathbb{E}_{D_{\text{test}}}[\hat{R}_{D_{\text{test}}}(\hat{w}_{D_{\text{train}}})] = R(\hat{w}_{D_{\text{train}}})$
Validation and Testing Sets?

• If we use only the training/testing split, we can overfit the testing set

\[\hat{R}_{D_{test}}(\hat{w}_{D_{train}}) \neq R(\hat{w}_{D_{train}}) \]
Validation and Testing Sets?

- If we use only the training/testing split, we can overfit the testing set
 \[\hat{R}_{D_{test}}(\hat{\mathbf{w}}_{D_{train}}) \neq R(\hat{\mathbf{w}}_{D_{train}}) \]
- Do not select the model based on test set
Validation and Testing Sets?

• If we use only the training/testing split, we can overfit the testing set

 \[\hat{R}_{\text{test}}(\hat{\mathbf{w}}_{\text{train}}) \neq R(\hat{\mathbf{w}}_{\text{train}}) \]

• Do not select the model based on test set

• **Validation set** = reserve part of training set for model selection

 • Actually the “test set” before is a validation set

• Cross-validation = avoid bias of the validation set selection
Cross-validation

• Demo: k-fold CV for model selection
Regularization

• “Our models cannot be that complex, those large weights can only come from noise”

• ⟹ Penalize large weights in the loss functions
Regularization

- \(\min_{\mathbf{w}} \hat{R}_D(\mathbf{w}) + \lambda C(\mathbf{w}) \)

- Linear regression: \(\hat{R}_D(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x})^2 \)
Regularization

• \(\min_w \hat{R}_D(w) + \lambda C(w) \)

• Linear regression: \(\hat{R}_D(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x)^2 \)

• Ridge \((L_2)\): \(C(w) = \|w\|_2^2 = \sum_{k=1}^{d} w_k^2 \), has closed form solution
Regularization

- \(\min_{w} \hat{R}_D(w) + \lambda C(w) \)

- Linear regression: \(\hat{R}_D(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - w^T x)^2 \)

- Ridge (\(L_2 \)): \(C(w) = \|w\|_2^2 = \sum_{k=1}^{d} w_k^2 \), has closed form solution

- Lasso (\(L_1 \)): \(C(w) = \|w\|_1 = \sum_{k=1}^{d} |w_k| \), doesn’t have closed form solution
Lasso Leads to Sparsity

The lasso coefficients

The penalty term (budget) shown as a constraint region

RSS (Least Square) coefficients

The ridge regression coefficients

Contours of RSS as it move away from the minimum

LASSO

RIDGE REGRESSION

Image credit: link
Standardization

- The “small-weight” idea only applies when the data is standardized
Standardization

• The “small-weight” idea only applies when the data is standardized

• e.g. x_1 is income (10^4), x_2 is altitude (10^3), x_3 is height (10^0)
Standardization

• The “small-weight” idea only applies when the data is standardized

 • e.g. x_1 is income (10^4), x_2 is altitude (10^3), x_3 is height (10^0)

 • Originally $w_1 = 0.1, w_2 = 2, w_3 = 2000$

 • Penalize $\|w\|^2$ and get $w_1 = w_2 = w_3 = 1$

 • x_3 will be useless!
Standardization

- The “small-weight” idea only applies when the data is standardized
- e.g. x_1 is income (10^4), x_2 is altitude (10^3), x_3 is height (10^0)
- Penalize $\|w\|_2^2$ and get $w_1 = w_2 = w_3 = 1$
- x_3 will be useless!
- Standardize when using regularization: $	ilde{x}_{ij} = \frac{x_{ij} - \hat{\mu}_j}{\hat{\sigma}_j}$
End of Presentation
Beginning of Q&A