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Gaussian Mixture Model

• Unsupervised method 

• Fit multimodal Gaussian distributions 



Formal Definition

• The model is described as:

• The parameters of the model are:

• The training data is unlabeled – unsupervised setting

• Why not fit with MLE?



Optimization problem

• Model:

• Apply MLE:
• Maximize:

• Difficult, non convex optimization with constraints

• Use EM algorithm instead 



EM Algorithm for GMMs

• Idea: 
• Objective function:

• Split optimization of the objective into to parts

• Algorithm:
• Initialize model parameters (randomly):

• Iterate until convergence: 
• E-step

• Assign cluster probabilities (“soft labels”) to each sample

• M-step

• Solve the MLE using the soft labels



Initialization

• Initialize model parameters  (randomly)

• Uniform for cluster probabilities

• Centers
• Random

• K-means heuristics 

• Covariances: 
• Spherical, according to empirical variance



E-step

• For each data point and each 
cluster , compute the probability
that belongs to
(given current model parameters)

“soft labels” 

N

K

Probabilities of point n 
belonging to clusters 1…K 
(sum up to 1)

Sum determines the 
“weight” of cluster k



E-step

• For each data point and each 
cluster , compute the probability
that belongs to
(given current model parameters)

“soft labels” 



M-step

• Now we have “soft labels” for the data -> fall back to supervised MLE

• Optimize the log likelihood:
• Instead of the original (difficult objective):

We optimize the following:

• Differentiate w.r.t.



M-step

• Update model parameters:

• Update prior for each cluster: N

K

Probabilities of point n 
belonging to clusters 1…K 
(sum up to 1)

Sum determines the 
“weight” of cluster k

Normalized column-wise sum 
are priors for clusters 1…K 



M-step

• Update model parameters:

• Update mean and covariance of 
each cluster



M-step

• Update model parameters:

• Update mean and covariance of 
each cluster



EM Algorithm for GMMs

• Idea: 
• Objective function:

• Split optimization of the objective into to parts

• Algorithm:
• Initialize model parameters (randomly):

• Iterate until convergence: 
• E-step

• Assign cluster probabilities (“soft labels”) to each sample
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• Find optimal parameters given the soft labels



Overlapping clusters



Overlapping clusters



Unequal cluster size



Imbalanced cluster size



Sensitivity to Initialization
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Sensitivity to Initialization



Sensitivity to initialization



Degenerate covariance

• The determinant of the covariance matrix tends to 0 



Practical Example – Color segmentation

• Input: an image 

• Can be thought of as a dataset of 3D (color) samples

• Run 3D GMM clustering over  



Practical Example – Color segmentation

Input Image



Practical Example – Color segmentation

3 clusters



Practical Example – Color segmentation

4 clusters



Practical Example – Color segmentation

5 clusters



Practical Example – Color segmentation

7 clusters



Practical Example – Color segmentation

8 clusters



Practical Example – Color segmentation

9 clusters



Practical Example – Color segmentation

10 clusters



Practical Example – Color segmentation

15 clusters



Practical Example – Color segmentation

20 clusters



Practical Example – Color segmentation

Input Image
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Generalized EM

• Idea: 
• Objective function:

• Split optimization of the objective into to parts

• Algorithm:
• Initialize model parameters (randomly):

• Iterate until convergence: 
• E-step

• Assign cluster probabilities (“soft labels”) to each sample

• M-step

• Find optimal parameters given the soft labels



Generalized M-step

• What is the objective function?

• GMM: 

• General:



Exercise

• Consider a mixture of K multivariate Bernoulli distributions with 
parameters                          , where 

• Multivariate Bernoulli distribution: 

• Question 1:  Write down the equation for the E-step update

hint GMM: Answer:
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Exercise

• Multivariate Bernoulli distribution:

• EM objective:



Exercise

• Question 3: Write down the M-step update

• Differentiate wrt.:



Exercise

• Question 3: Write down the M-step update

• Differentiate wrt.:



Exercise

• Question 3: Write down the M-step update

• Differentiate wrt.:



Summary

• EM algorithm is useful for fitting GMMs (or other mixtures) in an 
unsupervised setting 

• Can be used for: 
• Clustering

• Classification 

• Distribution estimation 

• Outlier detection



Other unsupervised clustering techniques

Source: https://scikit-learn.org/stable/modules/clustering.html

https://scikit-learn.org/stable/modules/clustering.html


Alternative for density estimation

• Kernel density estimation

Source: https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html

https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html
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