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Introduction to Machine Learning Exam
Questions Pack
August 21, 2021

Time limit: 120 minutes

Instructions. This pack contains all questions for the final exam. It contains the questions only. Please
use the accompanying answer sheet to provide your answers by blackening out the corresponding squares.
As the exam will be graded by a computer, please make sure to do blacken out the whole square and
do not use ticks or crosses. During the exam you can use a pencil to fill out the squares as well as an
eraser to edit your answers. After the exam is over, we will collect the questions pack and provide you with
additional time to blacken out the squares on the answer sheet with a black pen. Nothing written on pages
of the question pack will be collected or marked. Only the separate answer sheet with the filled squares
will be marked.

Please make sure that your answer sheet is clean and all answers are clearly marked by filling the squares
out completely. We reserve the right to classify answers as wrong without further consideration if the sheet
is filled out ambiguously.

Collaboration on the exam is strictly forbidden. You are allowed a summary of two A4 pages and a simple,
non-programmable calculator. The use of any other helping material or collaboration will lead to being
excluded from the exam and subjected to disciplinary measures by the ETH Zurich disciplinary committee.

Question Types In this exam, you will encounter the following question types.

• Multiple Choice questions with a single answer.
Multiple Choice questions have exactly one correct choice. Depending on the difficulty of the ques-
tion 2, 3, or 4 points are awarded if answered correctly, and zero points are awarded if answered
wrong or not attempted.

• True Or False questions.
Each True Or False questions has a value of 1 point if answered correctly, 0 points if answered wrong
or not attempted.

The total points sum up to 100 points. Not all questions need to be answered correctly to achieve the best
grade. There are no negative grades so you are incentivized to attempt all questions.
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1 Regression, Classification and Other Losses

We are given a dataset consisting of n labeled training points D = {(x1, y1), ..., (xn, yn)}, where xi 2 Rd

are the feature vectors and yi 2 R are the labels. The design matrix X 2 Rn⇥d contains as rows the feature
vectors xi 2 Rd. The label vector is denoted by y = (y1, . . . , yn)> 2 Rn. We assume that X is full rank
i.e., rank(X) = min(n, d). The empirical risk with the squared loss is defined as follows:

R̂D(w) =
1

n

nX

i=1

(w>xi � yi)
2 =

1

n
ky �Xwk22. (1)

The goal is to to find w 2 Rd that minimizes the empirical risk.

1.1 Ordinary Least Squares

Question 1 (1 point) R̂D(w) is a convex function in w.

A True B False

Question 2 (1 point) When n  d there always exists w such that ky �Xwk2 = 0.

A True B False

Question 3 (3 points) We would like to minimize the empirical risk using stochastic gradient descent (with
replacement). At time step t, what is the update formula?

A wt+1 = wt + ⌘t(X>Xwt � 2X>y).

B wt+1 = wt � ⌘t(2X>Xwt � 2X>y).

C wt+1 = wt + ⌘t(2Xwt � 2XX>y) .

D wt+1 = wt � ⌘t(Xwt � 2XX>y).

E wt+1 = wt + ⌘t(2yi � 2w>
t
xi)xi, for some randomly chosen i 2 {1, 2, . . . , n}.

F wt+1 = wt � ⌘t(2yi � 2w>
t
xi)xi, for some randomly chosen i 2 {1, 2, . . . , n}.

G wt+1 = wt + ⌘t(yi � 2w>
t
xi)xi, for some randomly chosen i 2 {1, 2, . . . , n} .

H wt+1 = wt � ⌘t(2yi � w>
t
xi)xi, for some randomly chosen i 2 {1, 2, . . . , n}.

Are the following statements True or False?

Question 4 (1 point) At each iteration t of the gradient descent algorithm, there exists a learning rate
⌘t > 0 such that the objective decreases (either strictly decreases or stays the same).

A True B False

Question 5 (1 point) At each iteration t of the stochastic gradient descent algorithm, there exists a
learning rate ⌘t > 0 such that the objective decreases (either strictly decreases or stays the same).

A True B False
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1.2 Model Evaluation

Assume that you have access to a dataset D = {(x1, y1), ..., (xn, yn)} of n = 10000 data samples (xi, yi)
that are drawn i.i.d. (indpendently and identically distributed) from some (unknown) distribution p(x, y).
You now need to decide how to split this dataset into a training set Dtrain and a validation set Dval so that
you can run the following standard procedure to learn and evaluate a regression model:

Step 1: Training the regression model on Dtrain by minimizing the empirical risk

bfDtrain = argmin
f

0

@bRDtrain(f) ,
1

|Dtrain|
X

(xi,yi)2Dtrain

(yi � f(xi))
2

1

A . (2)

Step 2: Estimating the true (population) risk of the learned model R( bfDtrain) by computing the empirical
risk on Dval defined as

bRDval

⇣
bfDtrain

⌘
=

1

|Dval|
X

(xi,yi)2Dval

(yi � bfDtrain(xi))
2. (3)

Remember that for a fixed estimator f(x), the true (population) risk is defined as:

R(f) = E(x,y)⇠p[(y � f(x))2].

Are the following statements True or False?

Question 6 (1 point) bRDval

⇣
bfDtrain

⌘
is more likely to provide better a estimate of the true (population)

risk R
⇣
bfDtrain

⌘
, when using a validation set of size 500 as opposed to a validation set of size 1000.

A True B False

Question 7 (1 point) Choosing a training set of size 1000 is more likely to provide a model bfDtrain that
has a lower true (population) risk R

⇣
bfDtrain

⌘
compared to training set of size 2000.

A True B False

Question 8 (1 point) The training risk (error) is always less than or equal to the validation risk (error), i.e.,

bRDtrain( bfDtrain)  bRDval

⇣
bfDtrain

⌘
.

A True B False

Question 9 (1 point) The validation risk in Equation (3) is an unbiased estimator of the true (population)
risk i.e.,

ED

h
bRDval

⇣
bfDtrain

⌘i
= ED

h
R( bfDtrain)

i
.

A True B False
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1.3 Classification

Question 10 (3 points) The table below shows the confusion matrix for a classifier f on the Iris dataset, a
dataset consisting of three different types of flowers as labels.

Predicted Class
Actual Class Setosa Versicolour Virginica

Setosa 20 10 20
Versicolour 0 50 0
Virginica 5 5 40

From the table, we derive a new binary classifier fbinary that predicts "Virginica" (label y = +1) when f
does and "not Virginica" (label y = �1) when f predicts "Versicolour" or "Setosa". What is the false
discovery rate (FDR) of fbinary ?
Reminder: FDR = #FP

#FP+#TP where #FP is the number of false positives and #TP is the number of true
positives.

A 1
3

B 1
5

C 1
4

D 1
2

E 1
9

F 3
5 G 0 H 2

5

Question 11 (3 points) A classifier f : X ! {�1,+1} is called a random classifier, if it assigns any
x 2 X independently to class f(x) = by = +1 with probability ⇢ and to class f(x) = by = �1 with
probability 1 � ⇢ for some 0  ⇢  1. Taking the perspective of hypothesis testing, we call samples with
predicted class by = +1 positives and class by = �1 negatives. Assume that the distribution of the data
satisfies P (x, y). We can compute the false positive rate FPR = P (by = 1|y = �1) and false negative rate
FNR = P (by = �1|y = +1) of random classifiers for different ⇢. What is the smallest FNR that you can
obtain with a random classifier with FPR  0.25 by tuning ⇢?

A 0 B 1
8

C 1
4

D 3
8

E 1
2

F 5
8

G 3
4

H 1

Question 12 (4 points) Assume that we are training a binary classifier y = f(x) that is allowed to abstain,
i.e., refrain from making a prediction. Therefore, we include an abstention label r as part of its action
(label) space, that is f : X ! {+1,�1, r}. In order to ensure that the classifier does not always abstain,
we introduce a cost c > 0 for every abstention that the classifier makes. Given a labeled data sample (x, y),
the 0-1 loss with abstention is then given by

`(f(x), y) = f(x) 6=y f(x) 6=r + c f(x)=r.

For a given data distribution P (x, y) and a fixed classifier f , the conditional expectation of the 0-1 loss
given x, i.e., E[`(f(x), y) | x], can then be written as:

A P (y = +1 | x)
�

f(x)=�1 + f(x)=+1

�
+ c f(x)=r.

B P (y = +1 | x) f(x)=+1 + (1� P (y = +1 | x)) f(x)=�1 + c f(x)=r.

C P (y = +1 | x) f(x)=�1 + (1� P (y = +1 | x)) f(x)=+1 + c f(x)=r.

D P (y = +1 | x) f(x)=�1 + (1� P (y = +1 | x)) f(x)=+1 + (1� c) f(x)=r.

E P (y = +1 | x) f(x)=+1 + (1� P (y = +1 | x)) f(x)=�1 + (1� c) f(x)=r.

F P (y = +1 | x)
�

f(x)=�1 + f(x)=+1

�
+ (1� c) f(x)=r.
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1.4 Huber Loss

Consider the so-called Huber loss `H,� : R ! R for a fixed constant � > 0, defined as follows:

`H,�(a) :=

(
1
2a

2 if |a|  �

�(|a|� 1
2�) if |a| > �

,

and represented in the following Figure 1.

Figure 1: Plots of the `abs, `sq and Huber `H,� (with � = 1) loss functions.

This loss is often employed to obtain estimators that are more robust to outliers in the training set. Further-
more, we denote as `abs(a) := |a| and `sq(a) :=

1
2a

2 the absolute value and squared losses, respectively.

Are the following statements True or False?

Question 13 (1 point) For large values of |a|, the Huber loss roughly behaves like the `abs loss, in the
sense that lim|a|!+1

`H,�(a)

`abs(a)
evaluates to a finite constant.

A True B False

Question 14 (1 point) Consider running regression on a dataset {(xi, yi)}ni=1 with the Huber loss for a
linear model to obtain

ŵ := argmin
w2Rd

nX

i=1

`H,�

�
yi � w>xi

�
.

We expect the solution vector ŵ to be sparse, thus we can use the Huber loss for feature selection.

A True B False

Question 15 (1 point) For any fixed value of � > 0, the Huber loss is convex on R.

A True B False
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2 Kernels

Question 16 (2 points) This question is regarding the task of regression. We want to compare using a fully
connected neural network vs. using kernel regression. Which of the following statements is correct?

A For any choice of kernel, kernel regression methods implicitly operate on finite-dimensional feature
spaces defined by the corresponding feature map.

B When using a fully connected neural network, we can arrive at a closed-form solution.
C Kernel regression can be considered as a linear model on an implicit feature space characterized by

the kernel’s feature map.
D Regardless of the kernel we use, kernel regression can only learn a polynomial function.

Figure 2: Dataset with two classes.

Question 17 (4 points) Consider the dataset in Figure 2. Which of the following feature maps� : R2 ! R
makes the classes linearly separable?
Reminder: The classes are linearly separable if there exists a threshold ✓0 2 R such �(x) � ✓0 for points
x from the first class, and �(x) < ✓0 for points x from the second class.

A �(x) = (x1 + x2)2

B �(x) = (x1x2 + 1)2

C �(x) =

����
x1x2p
x
2
1+x

2
2

����

D �(x) =

����
x1p
x
2
1+x

2
2

����

E �(x) =
p

x2
1 + x2

2

F �(x) = |x1x2|

G �(x) = x1 � x2

H �(x) = x1p
x
2
1+x

2
2
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Question 18 (3 points) Let d 2 N be a fixed constant number. Let h(m) : N ! N denote the number of
possible monomials (terms) of degree less or equal to m over d different variables x = (x1, . . . , xd). As an
example for d = 2,m = 2, the number of all the possible monomials is 6: 1, x1, x2, x2

1, x
2
2, x1x2. What is

the growth rate of h(m)?

A h(m) 2 ⇥(m). B h(m) 2 ⇥(m2). C h(m) 2 ⇥(dm). D h(m) 2 ⇥(md).

Question 19 (3 points) Let d 2 N be a fixed constant number. Assume that multiplication of two numbers,
addition of two numbers, and exponentiation of a number by another number (xy) all have a constant
(⇥(1)) computational cost. What is the computational cost of constructing the kernel matrix for a dataset
D = {xi}ni=1 with n points xi 2 Rd using the polynomial kernel for degree-m polynomials (we use the
kernel k(x, x0) = (1 + x>x0)m)?

A ⇥(m) B ⇥(ndm) C ⇥(nm) D ⇥(md) E ⇥(n2) F ⇥(mn2)

Are the following statements True or False?

Question 20 (1 point) For every valid kernel k(x, x0) : X ⇥ X ! R there exists a finite dimensional
feature map � : X ! Rd, such that k(x, x0) = �(x)>�(x0).

A True B False

Question 21 (1 point) For x, x0 2 R \ {0} we define k(x, x0) = sin(x)
(x0)2 + 1. k is a valid kernel.

A True B False

Question 22 (1 point) For x, x0 2 R2 we define k(x, x0) = x>Mx0 with M =


1 2
2 1

�
. k is a valid kernel.

A True B False

Question 23 (1 point) Let k1 be a valid kernel. Then, for any polynomial function f , k (x, x0) =
f (k1 (x, x0)) is a valid kernel.

A True B False
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3 Dimensionality Reduction with PCA

In principal component analysis (PCA), we map the data points xi 2 Rd, i = 1, . . . , n, to zi 2 Rk, k ⌧ d,
by solving the following optimization problem:

C⇤ =
1

n
min

W2Rd⇥k
,W

>
W=I

z1,...,zn2Rk

nX

i=1

kWzi � xik22 . (4)

We denote by W⇤, z⇤1 , . . . , z
⇤
n

the optimal solution of Equation (4). Assume the data points are centered,

i.e.,
nP

i=1
xi = 0.

Question 24 (3 points) What is the value of Tr(W⇤W>
⇤ )?

Reminder: For a square matrix A 2 Rk⇥k we denote its trace by Tr(A) and it is defined as the sum of its
diagonal elements: Tr(A) =

P
k

i=1 Aii

A n B k C d D max(n, d)

Question 25 (3 points) What holds for z⇤
i

?

A z⇤
i
= W>

⇤ (W⇤W>
⇤ )�1xi

B z⇤
i
= (W⇤W>

⇤ )�1W>
⇤ xi

C z⇤
i
= (W>

⇤ W⇤)�1W>
⇤ xi

D z⇤
i
= W>

⇤ (W⇤W>
⇤ )�1W⇤xi

Question 26 (4 points) Let �1 � �2 � · · · � �d � 0 be the eigenvalues of the empirical covariance matrix
⌃ = 1

n

P
n

i=1 xix>
i
2 Rd⇥d. Let v1, . . . , vd 2 Rd be the corresponding eigenvectors. Remember that:

Wz⇤
i
= (

kX

j=1

vjv
>
j
)xi.

What is the value of C⇤?
Hint: (i.) kxk22 = x>x = Tr(x>x), 8x 2 Rd, (ii.) Tr(ABC) = Tr(CAB) = Tr(BCA) for matrices
A,B,C of appropriate dimensions. For a definition of trace, see the reminder in Question 24.

A 1
n

P
d

i=k+1 �i B 1
n

P
k

i=1 �i C 1
n

P
d

i=k+1 �
2
i

D 1
n

P
k

i=1 �
2
i

Are the following statements True or False?

Question 27 (1 point) PCA helps us find a linear mapping to a lower dimensional space.

A True B False

Question 28 (1 point) Let n be the number of the points and d the dimension of the points in the dataset.
In standard PCA, we compute the spectral decomposition (eigenvalues and eigenvectors) of the empirical
covariance matrix with size d⇥ d. In kernelized PCA we instead compute the spectral decomposition of a
matrix of size n⇥ n.

A True B False

Question 29 (1 point) Imagine two features are identical in the whole dataset, i.e., they are identical among
all data samples x1, . . . , , xn. Then, utilizing PCA, we can strictly reduce the dimension of the dataset by
at least one with zero reconstruction error.

A True B False
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4 Neural Networks and Optimization

4.1 Regression with Neural Networks

We model a regression problem on the dataset {(xi, yi)}i=1,...,n, where inputs xi and labels yi are both in
Rd, with a fully connected neural network. We use the sigmoid activation function '(x) , 1

1+e�x . The
sigmoid function is applied element-wise to vectors.

Therefore, the whole neural network is a function f : Rd ! Rd, f(x) = W3'(W2'(W1x+ b1)+ b2)+ b3,
where Wj 2 Rd⇥d, bj 2 Rd, j 2 {1, 2, 3}. Here, we have dropped the dependence of f(x) on Wj , bj for
simplicity, and f is written only as a function of the input x to the neural network.
Suppose that during training, we only optimize parameters W3, b3, while keeping the other parameters
fixed. That is, we would like to solve

min
W3,b3

nX

i=1

kf(xi)� yik22 . (5)

Answer the following questions.

Question 30 (1 point) The objective from Equation (5) is convex with respect to W3, b3.

A True B False

Question 31 (1 point) We are using the cross-entropy loss function in the objective in Equation (5).

A True B False

Question 32 (3 points) Assume that d = 1. We pass a batch of input samples {xi}i2S defined by an
index set S ✓ {1, . . . , n} through a batch normalization layer with scale and shift parameters � = 2,� = 0
respectively. For every input xi, the layer outputs x̄i = � xi�µS

�S

+ �, where µS and �S are the empirical
mean and standard deviation of the input batch. What are the empirical mean and standard deviation of
{x̄i}i2S?

A (µS ,�S)

B (µS , 2�S)

C
⇣

µS

|S| ,
�S

|S|

⌘

D
⇣

µS

|S| , 2
�S

|S|

⌘
E (0, 1)

F (4, 1)

G (0, 2)

H (4, 2)
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4.2 Training Neural Networks

Consider training a multilayer perceptron (a fully connected neural network) using gradient descent.
Answer the following questions.

Question 33 (1 point) The network weights are updated during forward propagation.

A True B False

Question 34 (1 point) For performing a binary classification task, the final output of the neural network is
typically passed through a ReLu activation before being compared to the label.

A True B False

Question 35 (2 points) Below are the (smoothed) training loss curves for 3 small identical networks trained
with the following optimization algorithms:

A Gradient descent.

B Batch stochastic gradient descent with large batch size.

C Batch stochastic gradient descent with small batch size.

We use the same constant learning rate in all 3 cases. The x-axis corresponds to the batch size multiplied
by number of (stochastic) gradient descent iterations. Match the images (left to right) with the optimization
method used.

A (A, B, C) B (A, C, B) C (B, A, C) D (B, C, A) E (C, A, B) F (C, B, A)

Question 36 (3 points)
We have a one-layer fully connected neural network with input nodes vi, i = 1, . . . , d, and a single output
node vout. The activation function of the output node vout is the identity. We initialize every weight inde-
pendently with a standard Gaussian distribution wi ⇠ N

�
0,�2

�
, i 2 {1, . . . , d}. To avoid overfitting, we

use dropout and thus independently set each node vj to zero with probability 1� p.
Assume we give as input to the network d independent random variables Xi, i = 1, . . . , d, with E[Xi] =
0,E[X2

i
] = 1. How should we choose the variance �2 so that we have E[vout] = 0 and E[v2out] = 1? Here

the randomness is over the random variables Xi, weights wi, and node dropout events.

A �2 = 2
dp(1�p) B �2 = 2

dp
C �2 = 1

dp
D �2 = 1

dp(1�p)
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Question 37 (2 points) Figure 3 displays a training dataset and the learned function of 3 different neural
networks that are trained on the dataset. The dataset consists of 100 scalar input-output pairs. All neural
networks have one hidden layer with 20 units but differ in the choice of the activation function that are either
the sigmoid, ReLu or identity function. Match the learned output function with the activation function that
is used in the corresponding neural network.

Figure 3: Effect of different activation functions.

A (A, B, C) = (sigmoid, ReLu, identity)
B (A, B, C) = (sigmoid, identity, ReLu)
C (A, B, C) = (ReLu, sigmoid, identity)

D (A, B, C) = (ReLu, identity, sigmoid)
E (A, B, C) = (identity, ReLu, sigmoid)
F (A, B, C) = (identity, sigmoid, ReLu)

Question 38 (3 points) Assume the input to a convolutional layer is a 16 ⇥ 19 matrix and you perform a
convolution with kernel size 4 ⇥ 3 with padding equal to 0 and horizontal and vertical strides equal to 2.
After performing the convolution, you flatten the resulting matrix to a vector. What is the dimension of the
resulting vector?

A 56 B 58 C 63 D 64
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4.3 Optimization

Question 39 (2 points) You are using gradient descent to find the minimum of the function f(x) = x2.
You experiment by fixing the number of iterations T and trying different learning rates to find the one which
leads to a better (smaller) solution. There are different possible settings, e.g., you choose a learning rate of
zero (1), the optimal learning rate (2), a learning rate that is too large (3) or too small (4).
When initializing at point A on the plot below, which point of the plot are you most likely to reach with
each learning rate setting? Match the settings 1, 2, 3, and 4 to the points on the plot indicated by letters A,
B, C, and D.

1: learning rate of zero

2: optimal learning rate

3: too large learning rate

4: too small learning rate

A 1: A, 2: B, 3: C, 4: D
B 1: A, 2: B, 3: D, 4: C
C 1: A, 2: C, 3: B, 4: D
D 1: A, 2: D, 3: B, 4: C

E 1: D, 2: A, 3: C , 4: B
F 1: D, 2: A, 3: B, 4: C
G 1: C, 2: D, 3: B, 4: A
H 1: C, 2: B, 3: D, 4: A

Question 40 (2 points) Now we use gradient descent with momentum to find the minimum of the function
f(x) = x2. We set both the momentum parameter m and learning rate parameter ⌘ to some strictly positive
(nonzero) value. At the 2020’th time step we move from x2019 6= 0 to x2020 = 0. We perform one more
update to obtain x2021. Which of the following is true?

A f(x2020) < f(x2021) B f(x2020) > f(x2021) C f(x2020) = f(x2021)
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5 Frequentist and Bayesian Inference

Question 41 (2 points) What is the advantage of using bootstrap parameter estimates in comparison with
distribution-dependent parameter estimates? Choose the correct statement among the following.

A It is possible to compute the closed-form solution for bootstrap parameter estimates.
B Bootstrap parameter estimates require less computational resources than distribution-dependent pa-

rameter estimates.
C Bootstrap parameter estimates can be computed for any black-box predictor.
D Distribution-based parameter estimates have asymptotic guarantees while bootstrap estimates do not.

Question 42 (2 points) Consider a dataset D = {xi}ni=1 and assume that the likelihood function P (D | ✓)
depends on some parameters ✓ to be estimated. Furthermore, we assume that we have access to the true
prior P (✓) over the parameters. Choose the correct statement among the following.

A The maximum a posteriori (MAP) estimate and the maximum likelihood estimate (MLE) coincide,
since they both involve a maximization of the likelihood P (D | ✓).

B The posterior distribution over the parameters is given by P (✓ |D) = P (D | ✓)P (✓).

C Both the MLE and the MAP estimates maximize P (D | ✓).
D The maximum likelihood estimate is a point estimate, whereas the maximum a posteriori estimate

outputs a distribution.
E Frequentist inference results in a point estimate for ✓, whereas Bayesian inference naturally results in

a distribution over ✓.
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6 Expectation Maximization Algorithm

6.1 Clustering Movies Using Soft EM

We utilize the (soft) expectation maximization (EM) algorithm for clustering movies into two clusters
based on the actors who star in them. We abbreviate each of the movies ’(S)tar Wars’, ’(T)itanic’, ’The
(G)odfather’, ’(I)nterstellar’, and ’The (M)atrix’ with the first letter of their names. For simplicity, we
focus on only four important actors and we represent each movie as a binary (zero-one) feature vector
X 2 {0, 1}4, where the i’th, i 2 {1, 2, 3, 4}, element is equal to one if the actor is in the movie and zero
otherwise. Assume there are two clusters C 2 {0, 1}.

Feature vectors X for each movie are independently generated in the following way:

• Sample a cluster from the distribution P (C). The distribution P (C) is Bernoulli with unknown
parameter q, i.e.,

P (C = c) =

⇢
q if c = 1
1� q if c = 0

• Xi is generated by p(Xi | C) and Xi is conditionally independent of Xj given C for all i 6= j. This
means that the ith feature is conditionally independent of the jth feature given the cluster assignment
of the movie. The distribution p(Xi | C), i 2 {1, 2, 3, 4}, is also Bernoulli with unknown parameters.
Note that this gives rise to 8 unknown parameters, four for each cluster.

Hint: All questions below can be solved independently of each other.

Question 43 (3 points) Which of the following describes the likelihood p(X) of a single data point?

A q
P4

i=1 p(Xi | C = 1) + (1� q)
P4

i=1 p(Xi | C = 0)

B (1� q)
P4

i=1 p(Xi | C = 1) + q
P4

i=1 p(Xi | C = 0)

C q
Q4

i=1 p(Xi | C = 1) + (1� q)
Q4

i=1 p(Xi | C = 0)

D (1� q)
Q4

i=1 p(Xi | C = 1) + q
Q4

i=1 p(Xi | C = 0)

The 5 movies above have the following feature vectors, respectively, where the bracket notation is used to
represent a vector:
(1, 1, 1, 0): G (0, 1, 0, 0): S (1, 0, 1, 0): T (0, 1, 1, 0): I (1, 0, 1, 0): M

Question 44 (3 points) E-Step
You initialize p̂(X | C = 1) =

�
1
8 ,

1
4 ,

3
4 ,

1
2

�
and p̂(X | C = 0) =

�
1
2 ,

1
2 ,

1
2 ,

1
2

�
and q̂ = 1

2 . You use the
soft expectation maximization (EM) algorithm to cluster the movies. After performing one E-step with this
initialization, what is the assignment probability of G to cluster 1?

A 0 B 3
19

C 3
16

D 3
8

E 5
8

F 13
16

G 16
19 H 1
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Question 45 (4 points) M-Step
Assume that after one E-step, you get the following estimated assignment probability to cluster 1 for each
movie, respectively: 1

4 , 1
3 , 1

3 , 2
3 , 3

4 . Now you would like to update the estimate of the parameters. You have
q̂ = 3/5. The next step is an M-step. What will q̂ be after this M-step?

A 0 B 1
15

C 2
5

D 7
15

E 8
15

F 3
5

G 14
15 H 1

Question 46 (2 points) You decide to try hard EM instead of soft EM. You use the same initialization of
p̂ and q̂ as in Question 44. At convergence, you obtain the following clusters: cluster 0 : {I}, cluster 1:
{G, S, T, M}. Suppose you instead initialized with p̂(X | C = 1) =

�
1
2 ,

1
2 ,

1
2 ,

1
2

�
and p̂(X | C = 0) =�

1
8 ,

1
4 ,

3
4 ,

1
2

�
. Assume that each E-step results in a unique hard clustering. Which of the following describes

the clusterings you would expect to see after convergence?

A cluster 0 : {T, M}, cluster 1: {G, S, I}
B cluster 0 : {G, S, I}, cluster 1: {T, M}
C cluster 0 : {I}, cluster 1: {G, S, T, M}
D cluster 0 : {G, S , T, M}, cluster 1: {I}

E cluster 0 : {G, I}, cluster 1: {S, T, M}
F cluster 0 : {S, T, M}, cluster 1: {G, I}
G cluster 0 : {}, cluster 1: {G, S, T, I, M}
H cluster 0 : {G, S, T, I, M}, cluster 1: {}
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6.2 Gaussian Mixture Models

You have data points x1, . . . , xn that you want to split into two clusters (y = 1 or y = 2). You assume a
Gaussian mixture model generated by a mixture of two Gaussians: N (µ1,⌃1) and N (µ2,⌃2). The mean
vectors µi and covariance matrices ⌃i of each of the two clusters are unknown. You assume that the prior
probability for a point being in class i is known and equal to wi (w1 + w2 = 1). You perform the hard
expectation maximization (EM) algorithm to cluster the data points.

Question 47 (1 point) The estimated cluster centers at convergence are independent of the initialization
we use for the cluster centers.

A True B False

Question 48 (1 point) In the E-step, you update your estimates of µi and ⌃i.

A True B False

Question 49 (1 point) We want to fix ⌃i, i = 1, 2, to be some diagonal matrix. In this case, the only
unknown parameters to estimate would be the cluster means µi. Is it True or False that for any choice
of diagonal ⌃i, the hard EM algorithm is equivalent to (outputs the same means as) Lloyd’s heuristic for
k-means?
Note: A diagonal matrix is by definition a matrix that has nonzero elements only on its diagonal.

A True B False

Question 50 (3 points) Hard EM
Let zt 2 {1, 2} be the cluster that point xt is currently assigned to, and ni be the number of points assigned
to cluster i, and n = n1 + n2. You estimate ⌃1 and ⌃2 separately and do not assume any particular
structure for them. To estimate ⌃1 and ⌃2, you maximize the data log-likelihood fixing the current cluster
assignments. The notation "t : At" means "the set of all t for which statement At is true". Let bµi =
1
ni

P
t:zt=i

xt. When updating the estimate of ⌃1 in hard EM, the update can be written as ⌃̂1 = ...

A 1
n1+1

P
t:zt=1(xt � µ̂1)(xt � µ̂1)>.

B 1
nw1

P
t:zt=1(xt � µ̂1)(xt � µ̂1)>.

C 1
n1

P
t:zt=1(xt � µ̂1)(xt � µ̂1)>.

D 1
n1+1

P
t:zt=1(xt � µ̂1)(xt � µ̂1)> + 1

n2+1

P
t:zt=2(xt � µ̂2)(xt � µ̂2)>.

E 1
n1

P
t:zt=1(xt � µ̂1)(xt � µ̂1)> + 1

n2

P
t:zt=2(xt � µ̂2)(xt � µ̂2)>.

F 1
nw1

P
t:zt=1(xt � µ̂1)(xt � µ̂1)> + 1

nw2

P
t:zt=2(xt � µ̂2)(xt � µ̂2)>.

G 1
nw1

P
t:zt=1 xtx>

t
.

H 1
n1

P
t:zt=1 xtx>

t
.
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7 Generative Adversarial Networks

You train a generative adversarial network (GAN) with neural network discriminator D and neural network
generator G. Let z ⇠ N (0, I), where I is the identity matrix, represent the random Gaussian input for G.
The objective during training is given by

min
G

max
D

Ex⇠pdata [logD(x)] + Ez⇠N (0,I)[log(1�D(G(z)))],

where pdata is the data generating distribution.

Please answer the following questions.

Question 51 (1 point) If D and G both have enough capacity, i.e., if they can model arbitrary functions,
the optimal G will be such that G(z) ⇠ pdata.

A True B False

Question 52 (1 point) The objective above can be interpreted as a two-player game between G and D.

A True B False

Question 53 (2 points) Suppose that the probability of a training sample x is pdata(x) =
1

100 and the prob-
ability of x under G is pG(x) = 1

50 . Suppose that the discriminator D is the globally optimal discriminator
for G with the above loss.

What is the probability of D classifying x as being from the generator?

A 1
2

B 1
3

C 2
3

D 1
4

E 3
4

F 1
6 G 0 H 1


