Exercises Learning and Intelligent Systems SS 2016

Series 1, Mar 1, 2016 (Probability and Linear Algebra)

LAS Group, Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: http://las.inf.ethz.ch/teaching/lis-s16/ Email questions to: Alkis Gotovos, alkisg@inf.ethz.ch

It is not mandatory to submit solutions and sample solutions will be published in two weeks. If you choose to submit your solution, please send an e-mail from your ethz.ch address with subject Exercise1 containing a PDF (LATEXor scan) to lis2016@lists.inf.ethz.ch until Sunday, Mar 13, 2016.

Problem 1 (Linear Regression and Ridge Regression):

Let $D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$ where $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. The goal in linear regression is to find parameters $\mathbf{w} \in \mathbb{R}^d$ such that $\forall i : y_i \approx \mathbf{w}^T \mathbf{x}_i$.¹ In the lecture we considered the *least-squares* optimization problem

$$\underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$
(1)

and showed that under some assumptions on D there exists a unique closed form solution

$$\mathbf{w}^* = \left(\mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y}_2$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is a $n \times d$ matrix with the \mathbf{x}_i as rows and $\mathbf{y} \in \mathbb{R}^n$ is a vector consisting of the scalars y_i .

- (a) Show for n < d that (1) does not admit a unique solution and that \mathbf{w}^* is ill-defined. Explain why in such a case we cannot uniquely identify \mathbf{w}^* .
- (b) Consider the case $n \ge d$. Under what assumptions on X does (1) admit a unique solution w^{*}? Give an example with n = 3 and d = 2 where these assumptions do not hold.

The *ridge regression* optimization problem with parameter $\lambda > 0$ is given by

$$\underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}_{\operatorname{Ridge}}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \left(y_{i} - w^{T} \mathbf{x}_{i} \right)^{2} + \lambda \mathbf{w}^{T} \mathbf{w} \right].$$
(2)

- (c) Show that $\hat{R}_{\text{Ridge}}(\mathbf{w})$ is convex with regards to \mathbf{w} for the case d = 1.
- (d) Derive the closed form solution $\mathbf{w}_{\text{Ridge}}^* = (\mathbf{X}^T \mathbf{X} + \lambda I_d)^{-1} \mathbf{X}^T \mathbf{y}$ to (2) where I_d denotes the identity matrix of size $d \times d$.
- (e) Show that (2) admits the unique solution \mathbf{w}_{Ridge}^* for any matrix **X**. Show that this even holds for the cases in (a) and (b) where (1) does not admit a unique solution \mathbf{w}^* .
- (f) What is the role of the term $\lambda \mathbf{w}^T \mathbf{w}$ in $\hat{R}_{\text{Ridge}}(\mathbf{w})$? What happens to $\mathbf{w}^*_{\text{Ridge}}$ as $\lambda \to 0$ and $\lambda \to \infty$?

¹Without loss of generality, we assume that both x_i and y_i are centered, i.e. they have zero empirical mean. Hence we can neglect the otherwise necessary bias term b.

Problem 2 (Normal Random Variables):

Let X be a Normal random variable with mean $\mu \in \mathbb{R}$ and variance $\tau^2 > 0$, i.e. $X \sim \mathcal{N}(\mu, \tau^2)$. Recall that the probability density of X is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\tau}} e^{-(x-\mu)^2/2\tau^2}, \quad -\infty < x < \infty.$$

Furthermore, the random variable Y given X = x is normally distributed with mean x and variance σ^2 , i.e. $Y|_{X=x} \sim \mathcal{N}(x, \sigma^2)$.

- (a) Derive the marginal distribution of Y.
- (b) Use Bayes' theorem to derive the *conditional distribution* of X given Y = y.

Hint: For both tasks derive the density up to a constant factor and use this to identify the distribution.

Problem 3 (Bivariate Normal Random Variables):

Let X be a bivariate Normal random variable (taking on values in \mathbb{R}^2) with mean $\mu = (1,1)$ and covariance matrix $\Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. The density of X is then given by

$$f_X(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^2 \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\right).$$

Find the conditional distribution of $Y = X_1 + X_2$ given $Z = X_1 - X_2 = 0$.