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Problem 1 (Linear Regression and Ridge Regression):

Let D = {(x1,41), (X2,Y2), - .- (Xn,yn)} Where x; € R? and y; € R. The goal in linear regression is to find

parameters w € R? such that Vi : 3; ~ w’x;.} In the lecture we considered the least-squares optimization
problem
~ n 2
argmin R(w) = argminz (yi — w'x;) (1)
w w i=1

and showed that under some assumptions on D there exists a unique closed form solution
—1
w' = (XTX) X7y,
where X € R™*? is a n x d matrix with the x; as rows and y € R™ is a vector consisting of the scalars ;.

(a) Show for n < d that (1) does not admit a unique solution and that w* is ill-defined. Explain why in such
a case we cannot uniquely identify w*.

(b) Consider the case n > d. Under what assumptions on X does (1) admit a unique solution w*? Give an
example with n = 3 and d = 2 where these assumptions do not hold.

The ridge regression optimization problem with parameter A > 0 is given by

n

argmin RRidge(w) = argmin Z (y, — wa,Lv)2 +awlwl. (2)

w i=1

(c) Show that Rgiqee(W) is convex with regards to w for the case d = 1.

(d) Derive the closed form solution W; .. = (XTX + )\Id)fl XTy to (2) where I; denotes the identity matrix
of size d x d.

(e) Show that (2) admits the unique solution wg; 4, for any matrix X. Show that this even holds for the cases
in (a) and (b) where (1) does not admit a unique solution w*.

(f) What is the role of the term Aw”'w in Rpiqee(w)? What happens to Whidge 35 A — 0 and A — 00?

LWithout loss of generality, we assume that both x; and y; are centered, i.e. they have zero empirical mean. Hence we can neglect
the otherwise necessary bias term b.



Solution 1:

()

We may rewrite the loss function in matrix notation, i.e.
Rw)=Xw—y) ' Xw—y) =w/X"Xw - 2y"Xw + yTy.
Since y”'y is independent of w, we have

argmin R(w) = argmin [WTXTXW — 2yTXw] .

Consider the singular value decomposition X = UX VT where U is an unitary n x n matrix, V is a unitary
d x d matrix and X is a diagonal n x d matrix with the singular values of X on the diagonal. We then have

argmin R(W) = argmin [WTV22VTW — 2yTUEVTW]

w w

Since V is unitary, we may rotate w using V to z = VT'w and formulate the optimization problem in terms

of z, i.e.
d

argmin [ZTEQZ - 2yTUEz] = argminz (2707 — 2(U'y);zi04]

z z i=1
where o; is the ¢ entry in the diagonal of 3. Note that this problem decomposes into d independent
optimization problems of the form

z; = argmin [ZQO'? - 2(Uty)izai]

fori=1,2,...,d. Since each problem is quadratic and thus convex we may obtain the solution by finding
the root of the first derivative. For i = 1,2,...d we require that z; satisfies

zi0? — (Uly);o; = 0.
For all i = 1,2,...d such that o; # 0, the solution z; is thus given by

(UtY)i.

0;

Zi; =

For the case n < d, however, X has at most rank n as it is a n X d matrix and hence at most n of its
singular values are nonzero. This means that there is at least one index j such that o; = 0 and hence any
zj € R is a solution to the optimization problem. As a result the set of optimal solutions for z is a linear
subspace of at least one dimension. By rotating this subspace using V, i.e. w = Vz, it is evident that
the optimal solution to the optimization problem in terms of w is also a linear subspace of at least one
dimension and that thus no unique solution exists. Furthermore, since X has at most rank n, XTX is not
of full rank. As a result (X7X)~! does not exist and w* is ill-defined.

The intuition behind these results is that the “linear system” Xw = y is underdetermined as there are less
data points than parameters that we want to estimate.

We showed in (a) that the optimization problem admits a unique solution only if all the singular values of
X are nonzero. For n > d, this is the case if and only if X is of full rank, i.e. all the columns of X are
linearly independent. As an example for a matrix not satisfying these assumptions, any matrix with linearly
dependent dependent suffices, e.g.

1 -2
Xdegenerate = 0 0
-2 4



(c) We consider the one dimensional objective function

n

RRidge(w) = Z (Z/z - wxi)Q + )\’U)Z.

i=1
Its first derivative with regards to w is given by

n

= 2in (wxi — yi) + 2 \w

=1

dRRidge (w)
dw

and the second derivative by

A n
7‘1232?56(”) =2) a? +2n
i=1

As the second derivative is non-negative and RRidge(w) is smooth, RRidge(w) is a convex function on R.

(d) The partial derivative of Rriqge(W) with regards to w is given by
VRRidge(w) = QXT(XW —y)+2\w.
Since Rpiqge(W) is convex, any critical point is a global minimum to (2). Hence Whidge SUCh that
VRRidge(Wl*xidge) = 2XT(XW1§idge =) + 2AWgigge =0
is an optimal solution to (2). This is equivalent to
(XTX + Ma)Whigee = X'y
which implies the required result

Wiiage = (X"X + A1) X"y,

(e) Note that X7X is a positive semi-definite matrix since Vu € R% : u”X"Xu = 37 [(Xu);]*> > 0 and
that \I, is positive definite for A > 0. This implies that (X7 X + A1) is positive definite — for any matrix

X. As a result, the inverse (X*X + /\Id)f1 exists® and Wi, is uniquely defined.

(f) The term Aw”'w “biases” the solution towards the origin, i.e. there is a quadratic penalty for solutions w
that are far from the origin. The parameter )\ determines the extend of this effect: As A — 0, Rgidge(W)
converges to R(w) As a result the optimal solution wg;,,, approaches the solution of (1). As A — oo,
only the quadratic penalty w”w is relevant and WRidge hence approaches the null vector (0,0, ...,0).

2This can be easily seen as the eigenvalues of positive definite matrices are strictly positive.



Problem 2 (Normal Random Variables):
Let X be a Normal random variable with mean i € R and variance 72 > 0, i.e. X ~ N(u,72). Recall that the
probability density of X is given by

1 @2

fx(x)=——e " , —oo<x < oo.

2T
Furthermore, the random variable Y given X = x is normally distributed with mean x and variance o2, ie.
Y|x=z ~ N(z,0%).

(a) Derive the marginal distribution of Y.

(b) Use Bayes' theorem to derive the conditional distribution of X given Y = y.

Hint: For both tasks derive the density up to a constant factor and use this to identify the distribution.
Solution 2:

As a prelude to both (a) and (b) we consider the joint density function fx y(z,y) of X and Y

1 L (@—p)?  (y—2)?
= X = = —_——
fxv(@y) = frix(yl ) fx () 5ror &P | —3 e
(A)
Using simple algebraic operations, we obtain
() 0= 2 )% 4 (0 = 2wy 4P
- o272
B (02 +72)2? — 22(0?p + 7%y) + o2 pu? + 729>
- 5272
2 2 2 o?utr? outr?y ) ottty )’ 2 2 2,2
(0' +7') x _2x(gg+7—2y)+(o;2t+72y) _(U,L;+T2y) ‘o pt+ 1Y
= )
2 2 2 2 2 N2
(2- (Fn+ Fmy)) o224 22 — (D)
= o272 + o272 '
o2472

C
®) (©)

(a) The marginal density of Y is given by

fr(y) = / Fxy (@ y)de = / Frix (81X = 2) fx(x)dz.

This is proportional to

2 2 2 2 2,\2
+
f ( ) / 1 (JJ — (;2‘:_7_2/1 + 02:_.,_2 y)) J 1 0'2,u2 + 7_2y2 _ %
x [ exp| —= rexp | —=
vy R P 2 0‘22_:; P 2 0272
(@]
®) (©)



Note that (B) matches the functional form of a normal density for the variable z. As a result, the first term
integrates to o7+/27/(02 + 72) and we thus only need to consider (C) to identify fy (y), i.e.

o2 72, 2
; 1 02u2+72y2—( U“;;sz)
v (y) ocexp 5 0272
(©)
1 [(0%2 + 027202 + 0272y + 7492) — (0*p2 + 20272y + 1y?)
=exp | —=
2| o212(0? + 72)
1 [027242 — 20272y + 027242
=exp| —=
2| o?12(0? + 72)
Conp (L[ v
2 [(e2+72)])"

It can easily be seen that the marginal distribution of Y is the Normal distribution with mean p and variance
2 2
o+ 77

The conditional density of X given Y = y is proportional to the joint density function, i.e.

fX|Y(fE|Y = y) = w X fX,Y(ﬂC,?J)-

Since (C) is independent of & we only need to consider (B) and have

2
2 2
1 (15*(0207+72N+a277wy>)
fX|Y(CC‘Y:y)O(eXp D) 52,2

024712

(B)

Similarly to (a), it immediately follows that the conditional distribution of X given Y = y is the Normal dis-
tribution with mean (02"7;;4 + 0;7;23/) and variance U"%{; Note that the mean is a convex combination

of 1 and the observation y.



Problem 3 (Bivariate Normal Random Variables):

Let X be a bivariate Normal random variable (taking on values in R?) with mean 1 = (1,1) and covariance
matrix 3 = (3 1). The density of X is then given by

—;ex —lx— Ty=tx -
150 = s o (30 S k).

Find the conditional distribution of Y = X; + X5 given Z = X; — X5 = 0.
Solution 3:

We present two approaches for this exercise:

APPROACH 1. Note that Z = 0 implies X; = X5. Furthermore by the definition of Y, we have X; = X5, =Y/2
given Z = 0. Hence the marginal density of Y given Z = 0 is proportional to

friz(ylZz =0) = w x fy,z(y,0) o fx Kzgﬂ :

We then have

20

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance .

APPROACH 2. We define the random variable R as
Y 1 1
- ()-(_1)x
———
=A
By linearity of expectation, the mean ug of R is

E[R] — AE[X] = Ay — (2> .

The covariance matrix Xg of R is given by

Tr = E[(R - E[R])(R - E[R])"] = E[A(X - E[X])(X - E[X])"A]
= AE[(X - EX))(X —E[X])T]AT = ATAT

()G )6 )
)(



Since X is multivariate Gaussian and R is an affine transformation of X, R is a bivariate Normal random variable
with mean ug and covariance matrix Xg.3 The conditional density of Y given Z = 0 is then given by

fyiz(ylZ =0) = frz(6:0) fy,z(y,0)
() () ()
() s D)

I

@

ks

o}
/\/Tﬁ
= N

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance ?.

3This result can be easily derived from the characteristic function of the multivariate Normal distribution. R is bivariate Normal
if and only if for any t € R?

E [eitTR] — oitTur—-tTEZRt/2
This holds since the corresponding property holds for X with s = tT A, i.e.

E [eitTR} -E [eitTAX] ) [6isTX] _ eisT,u—sTEs/Q _ ez‘tTA;L—tTA)::ATt/Q _ eitT;LR—tT):Rt/Q



