It is not mandatory to submit solutions and sample solutions will be published in two weeks. If you choose to submit your solution, please send an e-mail from your ethz.ch address with subject Exercise4 containing a PDF (LaTeX or scan) to lis2016@lists.inf.ethz.ch until Sunday, May 1st 2016.

Problem 1 (K-means initialization):
You are given two example datasets consisting of 1000 two dimensional points each. We want to find 4 clusters in each of them.

We know that K-means is not robust to initialization. Can you provide two different initializations for each of the datasets that would result in qualitatively different clusters? Sketch initializations and resulting clusters.

Solution 1:
In the plot below, you can see two possible initializations with all the resulting separating hyperplanes for each of the datasets.

This is just a sketch, but it is clearly visible that the clusters obtained with different initializations can differ a lot.
Problem 2 (K-means convergence):

In the K-means clustering algorithm, you are given a set of \(n \) points \(x_i \in \mathbb{R}^d \), \(i \in \{1, \ldots, n\} \) and you want to find the centers of \(k \) clusters \(\mu = (\mu_1, \ldots, \mu_k) \) by minimizing the average distance from the points to the closest cluster center. Formally, you want to minimize the following loss function

\[
L(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \ldots, k\}} \|x_i - \mu_j\|_2^2.
\]

To approximate the solution, we introduce new assignment variables \(z_i \in \arg \min_{j \in \{1, \ldots, k\}} \|x_i - \mu_j\|_2^2 \) for each data point \(x_i \). The K-means algorithm iterates between updating the variables \(z_i \) (assignment step) and updating the centers \(\mu_j = \frac{1}{|\{i : z_i = j\}|} \sum_{i : z_i = j} x_i \) (refitting step). The algorithm stops when no change occurs during the assignment step.

Show that K-means is guaranteed to converge (to a local optimum). \textit{Hint:} You need to prove that the loss function is guaranteed to decrease monotonically in each iteration until convergence. Prove this separately for the assignment step and the refitting step.

Solution 2:

To prove convergence of the K-means algorithm, we show that the loss function is guaranteed to decrease monotonically in each iteration until convergence for the assignment step and for the refitting step. Since the loss function is non-negative, the algorithm will eventually converge when the loss function reaches its (local) minimum.

Let \(z = (z_1, \ldots, z_n) \) denote the cluster assignments for the \(n \) points.

(i) Assignment step

We can write down the original loss function \(L(\mu) \) as follows:

\[
L(\mu, z) = \sum_{i=1}^{n} \|x_i - \mu_{z_i}\|_2^2
\]

Let us consider a data point \(x_i \), and let \(z_i \) be the assignment from the previous iteration and \(z_i^* \) be the new assignment obtained as:

\[
z_i^* \in \arg \min_{j \in \{1, \ldots, k\}} \|x_i - \mu_j\|_2^2
\]

Let \(z^* \) denote the new cluster assignments for all the \(n \) points. The change in loss function after this assignment step is then given by:

\[
L(\mu, z^*) - L(\mu, z) = \sum_{i=1}^{n} (\|x_i - \mu_{z_i^*}\|_2^2 - \|x_i - \mu_{z_i}\|_2^2) \leq 0
\]

The inequality holds by the rule \(z_i^* \) is determined, i.e. to assign \(x_i \) to the nearest cluster.

(ii) Refitting step

We can write down the original loss function \(L(\mu) \) as follows:

\[
L(\mu, z) = \sum_{j=1}^{k} \left(\sum_{i : z_i = j} \|x_i - \mu_j\|_2^2 \right)
\]
Let us consider the j^{th} cluster, and let μ_j be the cluster center from the previous iteration and μ_j^* be the new cluster center obtained as:

$$
\mu_j^* = \frac{1}{|\{i : z_i = j\}|} \sum_{i : z_i = j} x_i
$$

Let μ^* denote the new cluster centers for all the k clusters. The change in loss function after this refitting step is then given by:

$$
L(\mu^*, z) - L(\mu, z) = \sum_{j=1}^{k} \left(\sum_{i : z_i = j} \|x_i - \mu_j^*\|_2^2 - \left(\sum_{i : z_i = j} \|x_i - \mu_j\|_2^2 \right) \right) \leq 0
$$

The inequality holds because the update rule of μ_j^* essentially minimizes this quantity.

Problem 3 (K-medians clustering):

In this exercise, you are asked to derive a new clustering algorithm that would use a different loss function given by

$$
L(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \ldots, k\}} \|x_i - \mu_j\|_1.
$$

(a) Find the update steps both for z_i and μ_j in this case.

(b) What can you say about the convergence of your algorithm?

(c) In which situation would you prefer to use K-medians clustering instead of K-means clustering?

Solution 3:

(a) As in the K-means algorithm, let’s again introduce hidden variables $z_i = \arg \min_{j \in \{1, \ldots, k\}} \|x_i - \mu_j\|_1$ for each data point x_i. Then the initial problem

$$
\mu = \arg \min_{\mu} \sum_{i=1}^{n} \min_{j \in \{1, \ldots, k\}} \|x_i - \mu_j\|_1
$$

can be rewritten in a different form (because we know where exactly the minimum is achieved):

$$
\mu = \arg \min_{\mu} \sum_{i=1}^{n} \|x_i - \mu_{z_i}\|_1
$$

In order to find the solution with respect to μ_j with fixed z_i, let’s leave only the data points that correspond to the j^{th} component:

$$
\mu_j = \arg \min_{\mu_j} \sum_{i : z_i = j} \|x_i - \mu_j\|_1
$$

$$
\mu_j = \arg \min_{\mu_j} \sum_{i : z_i = j} \sum_{q=1}^{d} |x_{i,q} - \mu_{j,q}|
$$
This can again be separated component-wise:

\[
\mu_{j,q} = \arg \min_{\mu_{j,q}} \sum_{i: z_i = j} |x_{i,q} - \mu_{j,q}|
\]

Again, as in the K-means algorithm, we proceed by finding the derivative of the functional and setting it to zero. In order to get rid of the \(L_1\) norm, we also separate the functional into the sum over those \(x_{i,q}\) that are smaller than \(\mu_{j,q}\) and those that are larger:

\[
\sum_{i: z_i = j, x_{i,q} \leq \mu_{j,q}} |x_{i,q} - \mu_{j,q}| + \sum_{i: z_i = j, x_{i,q} > \mu_{j,q}} |x_{i,q} - \mu_{j,q}| = \sum_{i: z_i = j, x_{i,q} \leq \mu_{j,q}} (\mu_{j,q} - x_{i,q}) + \sum_{i: z_i = j, x_{i,q} > \mu_{j,q}} (x_{i,q} - \mu_{j,q})
\]

The derivative of every bracket in the sum is either +1 or −1, and the number of +1’s is exactly \(|\{i : z_i = j, x_{i,q} \leq \mu_{j,q}\}|\). Therefore, we need to set

\[
|\{i : z_i = j, x_{i,q} \leq \mu_{j,q}\}| - |\{i : z_i = j, x_{i,q} > \mu_{j,q}\}| = 0
\]

This means that \(\mu_{j,q}\) is nothing but the median of all the numbers \(x_{i,q}\), \(i : z_i = j\).

The resulting algorithm then iterates between two steps:

- \(z_i = \arg \min_{j \in 1,...,k} \|x_i - \mu_j\|_1\)
- \(\mu_{j,q} = \text{median}(x_{i,q}, i : z_i = j), \forall j = 1,\ldots,k; \forall q = 1,\ldots,d\).

(b) You can prove the same convergence properties for K-medians as for K-means.

(c) In comparison with K-means, K-medians clustering is particularly robust to outliers. Thus, if we expect out input data to have many outliers, it is preferable to use K-medians clustering.