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Problem 1 (K-means initialization):

You are given two example datasets consisting of 1000 two dimensional points each. We want to find 4 clusters
in each of them.

We know that K-means is not robust to initialization. Can you provide two different initializations for each of the
datasets that would result in qualitatively different clusters? Sketch initializations and resulting clusters.

Solution 1:

In the plot below, you can see two possible initializations with all the resulting separating hyperplanes for each of
the datasets.

This is just a sketch, but it is clearly visible that the clusters obtained with different initializations can differ a lot.



Problem 2 (K-means convergence):

In the K-means clustering algorithm, you are given a set of n points xi ∈ Rd, i ∈ {1, . . . , n} and you want to
find the centers of k clusters µ = (µ1, . . . , µk) by minimizing the average distance from the points to the closest
cluster center. Formally, you want to minimize the following loss function

L(µ) =

n∑
i=1

min
j∈{1,...,k}

‖xi − µj‖22.

To approximate the solution, we introduce new assignment variables zi ∈ argminj∈{1,...,k} ‖xi − µj‖22 for each
data point xi. The K-means algorithm iterates between updating the variables zi (assignment step) and updating
the centers µj = 1

|{i:zi=j}|
∑
i:zi=j

xi (refitting step). The algorithm stops when no change occurs during the
assignment step.

Show that K-means is guaranteed to converge (to a local optimum). Hint: You need to prove that the loss
function is guaranteed to decrease monotonically in each iteration until convergence. Prove this separately for
the assignment step and the refitting step .

Solution 2:

To prove convergence of the K-means algorithm, we show that the loss function is guaranteed to decrease
monotonically in each iteration until convergence for the assignment step and for the refitting step. Since the
loss function is non-negative, the algorithm will eventually converge when the loss function reaches its (local)
minimum.

Let z = (z1, . . . , zn) denote the cluster assignments for the n points.

(i) Assignment step
We can write down the original loss function L(µ) as follows:

L(µ, z) =

n∑
i=1

‖xi − µzi‖22

Let us consider a data point xi, and let zi be the assignment from the previous iteration and z∗i be the new
assignment obtained as:

z∗i ∈ arg min
j∈{1,...,k}

‖xi − µj‖22

Let z∗ denote the new cluster assignments for all the n points. The change in loss function after this
assignment step is then given by:

L(µ, z∗)− L(µ, z) =
n∑
i=1

(
‖xi − µz∗i ‖

2
2 − ‖xi − µzi‖22

)
≤ 0

The inequality holds by the rule z∗i is determined, i.e. to assign xi to the nearest cluster.

(ii) Refitting step
We can write down the original loss function L(µ) as follows:

L(µ, z) =

k∑
j=1

( ∑
i:zi=j

‖xi − µj‖22
)
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Let us consider the jth cluster, and let µj be the cluster center from the previous iteration and µ∗j be the
new cluster center obtained as:

µ∗j =
1

|{i : zi = j}|
∑
i:zi=j

xi

Let µ∗ denote the new cluster centers for all the k clusters. The change in loss function after this refitting
step is then given by:

L(µ∗, z)− L(µ, z) =
k∑
j=1

(( ∑
i:zi=j

‖xi − µ∗j‖22
)
−
( ∑
i:zi=j

‖xi − µj‖22
))
≤ 0

The inequality holds because the update rule of µ∗j essentially minimizes this quantity.

Problem 3 (K-medians clustering):

In this exercise, you are asked to derive a new clustering algorithm that would use a different loss function given
by

L(µ) =

n∑
i=1

min
j∈{1,...,k}

‖xi − µj‖1.

(a) Find the update steps both for zi and µj in this case.

(b) What can you say about the convergence of your algorithm?

(c) In which situation would you prefer to use K-medians clustering instead of K-means clustering?

Solution 3:

(a) As in the K-means algorithm, let’s again introduce hidden variables zi = argminj∈1,...,k ||xi − µj ||1 for
each data point xi. Then the initial problem

µ = argmin
µ

n∑
i=1

min
j∈1,...,k

||xi − µj ||1

can be rewritten in a different form (because we know where exactly the minimum is achieved):

µ = argmin
µ

n∑
i=1

||xi − µzi ||1

In order to find the solution with respect to µj with fixed zi, let’s leave only the data points that correspond
to the jth component:

µj = argmin
µj

∑
i:zi=j

||xi − µj ||1

µj = argmin
µj

∑
i:zi=j

d∑
q=1

|xi,q − µj,q|
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This can again be separated component-wise:

µj,q = argmin
µj,q

∑
i:zi=j

|xi,q − µj,q|

Again, as in the K-means algorithm, we proceed by finding the derivative of the functional and setting it to
zero. In order to get rid of the L1 norm, we also separate the functional into the sum over those xi,q that
are smaller than µj,q and those that are larger:∑
i:zi=j,xi,q≤µj,q

|xi,q−µj,q|+
∑

i:zi=j,xi,q>µj,q

|xi,q−µj,q| =
∑

i:zi=j,xi,q≤µj,q

(µj,q−xi,q)+
∑

i:zi=j,xi,q>µj,q

(xi,q−µj,q)

The derivative of every bracket in the sum is either +1 or −1, and the number of +1’s is exactly |{i : zi =
j, xi,q ≤ µj,q}|. Therefore, we need to set

|{i : zi = j, xi,q ≤ µj,q}| − |{i : zi = j, xi,q > µj,q}| = 0

This means that µj,q is nothing but the median of all the numbers xi,q, i : zi = j.

The resulting algorithm then iterates between two steps:

• zi = argminj∈1,...,k ||xi − µj ||1
• µj,q = median(xi,q, i : zi = j),∀j = 1, . . . , k;∀q = 1, . . . , d.

(b) You can prove the same convergence properties for K-medians as for K-means.

(c) In comparison with K-means, K-medians clustering is particularly robust to outliers. Thus, if we expect out
input data to have many outliers, it is preferable to use K-medians clustering.
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