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Problem 1 (Independence Assumptions of Naive Bayes Classifiers):

Consider a naive Bayes classifier with binary class variable C ∈ {0, 1} and two binary features X1 ∈ {0, 1} and
X2 ∈ {0, 1}. Assume that X1 and X2 are truly independent. You are given the following probabilities:

P (X1 = 1|C = 1) = p

P (X1 = 1|C = 0) = 1− p
P (X2 = 0|C = 1) = q

P (X2 = 0|C = 0) = 1− q
P (C = 0) = P (C = 1) = 0.5

(a) Given a test sample with X1 = 1 and X2 = 0, compute the decision rule for classifying the example as
belonging to class 1 in terms of q and p. Reformulate the decision rule in the form p ≥ . . ..

(b) We extend the naive Bayes classifier by adding another feature X3 which is simply a copy of X2. Again,
compute the decision rule of the classifier in terms of q and p. Reformulate the decision rule in the form
p ≥ . . ..

(c) Compare the decision boundaries of (a) and (b) by varying the value of q between 0 and 1. Show where the
second rule makes mistakes relative to the first (correct) decision rule.

Problem 2 (Bayesian optimal decisions for logistic regression):

Apply Bayesian decision theory to derive the optimal decision rule for logistic regression in the following setting:

• Estimated conditional distribution: P̂ (y|x) =

{
σ(wTx) if y = 1

1− σ(wTx) if y = −1

• Action set: {+1,−1, D}

• Cost function: C(y, a) =

{
1[y 6= a] if a ∈ {+1,−1}
c < 0.5 if a = D

Here, 1[·] denotes the indicator function.



Problem 3 (Bayesian optimal decisions for regression with asymmetric costs):

Apply Bayesian decision theory to derive the optimal decision rule for linear regression in the following setting:

• Estimated conditional distribution: P̂ (y|x) = N (y;wTx, σ2)

• Action set: R

• Cost function: C(y, a) = c1 max(y − a, 0) + c2 max(a− y, 0)

Here, c1 and c2 denote positive real valued constants.

Problem 4 (Optional) - (Autoencoders and PCA):

In this exercise, we analyze dimensionality reduction using autoencoders with linear activation functions and relate
them to principal component analysis (PCA). We consider the following setup: let D = {x1, . . . , xN} be given
inputs, with xi ∈ Rn. Let X = [x1, . . . , xN ] ∈ Rn×N be the matrix formed from the inputs. Assume that we
compute p hidden activations for every input xi example according to hi = φ1(W1xi + b1), where φ1(·) is an
activation function applied element-wise, W1 ∈ Rp×n are the input weights, and b1 ∈ Rp are biases. Note that we
can express the computation of all hidden activations as H = φ1(W1X + b1u

T ), where u is a vector containing
only ones of size N . For this analysis, assume that φ1(x) = x. Given the hidden activations H and output weights
W2 ∈ Rn×p as well as biases b2 ∈ Rn, the output of the autoencoder is computed as Y = φ2(W2H + b2u

T ),
where again we assume φ2(x) = x. The weights and biases of the autoencoder are selected as

arg min
W1,W2,b1,b2

‖X − Y ‖2. (1)

(a) Consider the squared-error criterion given the hidden activations, i.e. ‖X − (W2H + b2u
T )‖2. Derive an

expression for the biases b2 in terms of X, H and W2. Substitute your expression into the error and rewrite
it in the form ‖X ′ −W2H

′‖2, where X ′ (H ′) depends only on X (H) and constants.

(b) Compare the problem of minimizing ‖X ′−W2H
′‖2 with the problem of computing the PCA from the lecture.

Read off the optimal W2 and H ′. They should be expressed up to an arbitrary non-singular linear transform
given by a p× p matrix T .

(c) Show that the obtained solution for H ′ can actually be generated by proper choices of W1 and b1.

(d) Comment on the relation of W1 to W2.

(e) Comment on the transformation of the input computed by the autoencoder with respect to PCA.
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