
LAS Group, Institute for Machine Learning

Dept. of Computer Science, ETH Zürich

Prof. Dr. Andreas Krause

Web: http://las.inf.ethz.ch/teaching/lis-s16/

Email questions to:

Felix Berkenkamp, befelix@inf.ethz.ch

Exercises
Learning and Intelligent Systems
SS 2016

Series 5, May 3rd, 2016

(Probabilistic Modeling & Autoencoders)

It is not mandatory to submit solutions and sample solutions will be published in two weeks. If you
choose to submit your solution, please send an e-mail from your ethz.ch address with subject Exercise5
containing a PDF (LATEX or scan) to lis2015@lists.inf.ethz.ch until Monday, May 16th 2016.

Problem 1 (Independence Assumptions of Naive Bayes Classifiers):

Consider a naive Bayes classifier with binary class variable C ∈ {0, 1} and two binary features X1 ∈ {0, 1} and
X2 ∈ {0, 1}. Assume that X1 and X2 are truly independent. You are given the following probabilities:

P (X1 = 1|C = 1) = p

P (X1 = 1|C = 0) = 1− p
P (X2 = 0|C = 1) = q

P (X2 = 0|C = 0) = 1− q
P (C = 0) = P (C = 1) = 0.5

(a) Given a test sample with X1 = 1 and X2 = 0, compute the decision rule for classifying the example as
belonging to class 1 in terms of q and p. Reformulate the decision rule in the form p ≥

(b) We extend the naive Bayes classifier by adding another feature X3 which is simply a copy of X2. Again,
compute the decision rule of the classifier in terms of q and p. Reformulate the decision rule in the form
p ≥

(c) Compare the decision boundaries of (a) and (b) by varying the value of q between 0 and 1. Show where the
second rule makes mistakes relative to the first (correct) decision rule.

Solution 1 (Independence Assumptions of Naive Bayes Classifiers):

(a) Exploiting the independence assumption we compute

P (X1 = 1, X2 = 0, C = 1) = P (X1 = 1, X2 = 0|C = 1)P (C = 1) (1)

= P (X1 = 1|C = 1)P (X2 = 0|C = 1)P (C = 1) (2)

= pq
1

2
, (3)

and, similarly,

P (X1 = 1, X2 = 0, C = 0) = P (X1 = 1|C = 0)P (X2 = 0|C = 0)P (C = 0) (4)

= (1− p)(1− q)1

2
. (5)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p

q

Filled region satisfies p ≥ 1 − q

p ≥ 1 − q

p

q

Filled region satisfies p ≥ (1−q)2

q2+(1−q)2

p ≥ (1−q)2

q2+(1−q)2

p

q

Comparison of decision boundaries

p = 1 − q

p =
(1−q)2

q2+(1−q)2

Figure 1: Decision boundaries

Consequently, we want

pq
1

2
≥ (1− p)(1− q)1

2
. (6)

Solving for p yields

p ≥ 1− q. (7)

(b) Similarly, using the replicated feature one obtains

pqq
1

2
≥ (1− p)(1− q)(1− q)1

2
(8)

Solving for p yields

p ≥ (1− q)2

q2 + (1− q)2
. (9)

(c) The two boundaries are shown in Figure 1. Furthermore, the figure shows where one decision rule differs
relative to the other (this is the region between the purple and the green line in the rightmost figure).

2

Problem 2 (Bayesian optimal decisions for logistic regression):

Apply Bayesian decision theory to derive the optimal decision rule for logistic regression in the following setting:

• Estimated conditional distribution: P̂ (y|x) =

{
σ(wTx) if y = 1

1− σ(wTx) if y = −1

• Action set: {+1,−1, D}

• Cost function: C(y, a) =

{
1[y 6= a] if a ∈ {+1,−1}
c < 0.5 if a = D

Here, 1[·] denotes the indicator function.

Solution 2 (Bayesian optimal decisions for logistic regression):

In the Bayesian optimal decision framework we want to pick the action which minimizes the expected loss:

a? = argmin
a∈A

Ey[C(y, a) | x] = argmin
a∈A

∫
C(y, a)p(y | x)dy

In our case

a? = argmin
a∈A

∑
y

C(y, a)p(y | x) = argmin
a∈A

∑
y

(1[y 6= a]1[D 6= a] + c1[D = a]) p(y | x)

Let’s analyze the expected cost of each action separately:

E[C(y, a) | x] =


p(y = −1 | x) if a = 1

p(y = 1 | x) if a = −1

c if a = D

We can conclude that we should only pick an action a ∈ {−1, 1} if the probability of action −a being correct is
lower than than c!

a? =

{
y P̂ (−y | x) < c

D otherwise

3

Problem 3 (Bayesian optimal decisions for regression with asymmetric costs):

Apply Bayesian decision theory to derive the optimal decision rule for linear regression in the following setting:

• Estimated conditional distribution: P̂ (y|x) = N (y;wTx, σ2)

• Action set: R

• Cost function: C(y, a) = c1 max(y − a, 0) + c2 max(a− y, 0)

Here, c1 and c2 denote positive real valued constants.

Solution 3 (Bayesian optimal decisions for regression with asymmetric costs):

We aim to minimize the expected risk E[C(y, a)] =
∫
C(y, a)P̂ (y|x)dy. Differentiating with respect to a yields

∂

∂a
E[C(y, a)] =

∂

∂a

∫ ∞
−∞

C(y, a)P̂ (y|x)dy (10)

=
∂

∂a

∫ ∞
−∞

c1 max(y − a, 0)P̂ (y|x)dy +

∫ ∞
−∞

c2 max(a− y, 0)P̂ (y|x)dy (11)

= −c1
∫ ∞
a

P̂ (y|x)dy + c2

∫ a

−∞
P̂ (y|x)dy (12)

= −c1[1− Φ(a;wTx, σ2)] + c2Φ(a;wTx, σ2), (13)

where Φ(u; v, w) is the CDF of the normal distribution with mean v and variance w. Setting the derivative to
zero and applying some algebraic manipulations yields

Φ(a;wTx, σ2) =
c1

c1 + c2
. (14)

Noting that Φ(u; v, w) = Φ((u− v)/
√
w; 0, 1), we can rewrite the above equation as

Φ

(
a−wTx

σ
; 0, 1

)
=

c1
c1 + c2

. (15)

Applying the inverse CDF of the standard normal distribution Φ−1, and rewriting the result in terms of a, yields
the optimal action

a∗ = wTx + σΦ−1
(

c1
c1 + c2

)
. (16)

Thus, if for example the cost of underestimation c1 is smaller than the cost of overestimation c2, i.e. c1 < c2,
then Φ−1(c1

c1+c2
) < 0. In this way the risk of overestimation is reduced.

4

Problem 4 (Optional) (Autoencoders and PCA):

In this exercise, we analyze dimensionality reduction using autoencoders with linear activation functions and relate
them to principal component analysis (PCA). We consider the following setup: let D = {x1, . . . , xN} be given
inputs, with xi ∈ Rn. Let X = [x1, . . . , xN] ∈ Rn×N be the matrix formed from the inputs. Assume that we
compute p hidden activations for every input xi example according to hi = φ1(W1xi + b1), where φ1(·) is an
activation function applied element-wise, W1 ∈ Rp×n are the input weights, and b1 ∈ Rp are biases. Note that we
can express the computation of all hidden activations as H = φ1(W1X + b1u

T), where u is a vector containing
only ones of size N . For this analysis, assume that φ1(x) = x. Given the hidden activations H and output weights
W2 ∈ Rn×p as well as biases b2 ∈ Rn, the output of the autoencoder is computed as Y = φ2(W2H + b2u

T),
where again we assume φ2(x) = x. The weights and biases of the autoencoder are selected as

arg min
W1,W2,b1,b2

‖X − Y ‖2. (17)

(a) Consider the squared-error criterion given the hidden activations, i.e. ‖X − (W2H + b2u
T)‖2. Derive an

expression for the biases b2 in terms of X, H and W2. Substitute your expression into the error and rewrite
it in the form ‖X ′ −W2H

′‖2, where X ′ (H ′) depends only on X (H) and constants.

(b) Compare the problem of minimizing ‖X ′−W2H
′‖2 with the problem of computing the PCA from the lecture.

Read off the optimal W2 and H ′. They should be expressed up to an arbitrary non-singular linear transform
given by a p× p matrix T .

(c) Show that the obtained solution for H ′ can actually be generated by proper choices of W1 and b1.

(d) Comment on the relation of W1 to W2.

(e) Comment on the transformation of the input computed by the autoencoder with respect to PCA.

Solution 4 (Autoencoders and PCA):

This solution is closely based on H. Bourlard, and Y. Kamp, Auto-association by multilayer perceptrons and
singular value decomposition, Biological Cybernetics, Springer-Verlag, vol. 59, pp. 291–294 1988.

(a) Note that ‖A‖2 = tr(AAT), where tr(B) denotes the trace of matrix B. Furthermore, note that tr(·) is a
linear operator and that tr(A) = tr(AT). Hence,

‖X − (W2H + b2u
T)‖2 = tr((X − (W2H + b2u

T))(X − (W2H + b2u
T))T) (18)

= tr(XXT)− 2tr(X(W2H + b2u
T)T) + tr((W2H + b2u

T)(W2H + b2u
T)T)

(19)

= tr(XXT)− 2tr(XHTW2)− 2tr(XubT2) + tr(W2HH
TW2) (20)

+ 2tr(W2Hub
T
2) + tr(b2u

TubT2) (21)

Dropping all terms that do not depend on b2 (these will cancel once we compute the gradient with respect
to b2) and noting that uTu = N , we get

−2tr(XubT2) + 2tr(W2Hub
T
2) +N tr(b2b

T
2). (22)

Computing the gradient of the above expression with respect to b2 yields

∇b2 [−2tr(XubT2) + 2tr(W2Hub
T
2) +N tr(b2b

T
2)] = −2∇b2tr(XubT2) + 2∇b2tr(W2Hub

T
2) +N∇b2tr(b2b

T
2)

(23)

= −2Xu+ 2W2Hu+ 2Nb2. (24)

5

Equating to zero and solving for b2 yields

b2 =
1

N
(X −W2H)u. (25)

Substituting this result into ‖X − (W2H + b2u
T)‖2 gives

‖X − (W2H + b2u
T)‖2 = ‖X − (W2H +

1

N
(X −W2H)uuT)‖2 (26)

= ‖X(I − 1

N
uuT)−W2[H(I − 1

N
uuT)]‖2 (27)

= ‖X ′ −W2H
′‖2, (28)

where X ′ = X(I − 1
N uu

T) and H ′ = H(I − 1
N uu

T).

(b) Assume that p < n, i.e. W2 has rank p. From the lecture we know that the optimal solution to ‖X ′−W2H
′‖2

is given when the product W2H is the best rank p approximation of X ′. This approximation can be obtained
by computing the singular value decomposition (SVD) of X ′, i.e.

X ′ = UΣV T , (29)

where U and V are matrices of size n× n and N × n, respectively, consisting of the normalized eigenvectors
of X ′X ′T and X ′TX ′, respectively. Σ is a diagonal matrix with entries

√
λ1, . . . ,

√
λn on the diagonal, where

λi is the i-th largest eigenvalue (assume the eigenvalues to be sorted such that λ1 ≥ λ2 ≥ . . . ≥ λn). In this
setting, the best rank p approximation of X ′ is given by

W2H
′ = Ũ Σ̃Ṽ T , (30)

where Σ̃ is a diagonal matrix with the p largest eigenvalues λ1, . . . , λp as its entries, and where Ũ and Ṽ T

are formed by the first p columns of U and V , respectively.

Consequently, denoting by T an arbitrary invertible p× p matrix, we have W2 = ŨT−1 and H ′ = T Σ̃Ṽ T .

(c) It remains to show that the H ′ can actually be generated by proper choices of W1 and b1. The output H
of the first layer is computed according to H = W1X + b1u

T . Multiplying from the right both sides by
(I − 1

N uu
T) gives

H(I − 1

N
uuT) = H ′ = W1X

′ + b1u
T (I − 1

N
uuT). (31)

Hence, we need that

T Σ̃Ṽ T = H ′ (32)

= W1X
′ + b1u

T (I − 1

N
uuT). (33)

Observe that

b1u
T (I − 1

N
uuT) = b1u

T − 1

N
b1u

TuuT (34)

= b1u
T − 1

N
b1Nu

T (35)

= b1u
T − b1uT (36)

= 0, (37)

and hence w1 is arbitrary. Furthermore,

W1X
′ = T Σ̃Ṽ T (38)

= T ŨTX ′, (39)

where we used X ′ = UΣV T . Consequently, W1 = TŨT is a proper choice for W1.

6

(d) We found that W1 = T ŨT and W2 = ŨT−1. Setting T = I, we have W2 = WT
1 .

(e) An auto-encoder essentially computes the PCA (up to an invertible linear transform).

7

