A Refresher on Probabilities

Alkis Gotovos, Josip Djolonga

March 1, 2016
Sample spaces and probabilities

- A **sample space** \(\Omega \) is the set of outcomes of a random experiment.

- Subsets \(A \subseteq \Omega \) are called **events**.

- For example, consider the experiment of tossing a fair coin twice.
 - Sample space: \(\Omega = \{HH, HT, TH, TT\} \)
 - Event of at least one “head” occurring: \(A = \{HH, HT, TH\} \).

- A **probability distribution** is a function that assigns a real number \(\Pr[A] \) to each event \(A \subseteq \Omega \).
Random variables

- Usually, we do not deal directly with sample spaces. Instead, we define *random variables* and probability distributions on those.

- A random variable is a function $X : \Omega \to \mathbb{R}$.

- For example, if $X := \text{“the number of heads in two coin tosses”}$, then

 $X(HH) = 2$
 $X(HT) = 1$
 $X(TH) = 1$
 $X(TT) = 0$
Probabilities of random variables

- If we denote by \mathcal{X} the set of values a random variable X can take, we can define probabilities directly on \mathcal{X}.

- In the above example, $\mathcal{X} = \{0, 1, 2\}$ and we define

 \[
 \begin{align*}
 \Pr[X = 0] &:= \Pr[\{TT\}] \\
 \Pr[X = 1] &:= \Pr[\{HT, TH\}] \\
 \Pr[X = 2] &:= \Pr[\{HH\}]
 \end{align*}
 \]

- In practice, we often completely forget about the sample space and work only with random variables.
Discrete random variables

- X is called a **discrete random variable** if \mathcal{X} is a finite or countably infinite set.

- **Examples:**
 - $\mathcal{X} = \{0, 1\}$
 - $\mathcal{X} = \mathbb{N}$
 - $\mathcal{X} = \mathbb{N}^d$

- The corresponding probability distribution $P(x) := \Pr[X = x]$ is called a **probability mass function**.

- **Non-negativity:** $P(x) \geq 0$, $\forall x \in \mathcal{X}$

- **Normalization:** $\sum_{x \in \mathcal{X}} P(x) = 1$
Continuous random variables

- X is called a **continuous random variable** if \mathcal{X} is an uncountably infinite set.

- Examples:
 - $\mathcal{X} = [0, 1]$
 - $\mathcal{X} = \mathbb{R}$
 - $\mathcal{X} = \mathbb{R}^d$

- The corresponding probability distribution $p(x)$ is called a **probability density function**.

- Non-negativity: $p(x) \geq 0$, $\forall x \in \mathcal{X}$

- Normalization: $\int_{\mathcal{X}} p(x)\,dx = 1$
The meaning of density

Important: For continuous random variables

\[p(x) \neq \Pr[X = x] = 0 \]

To acquire a probability, we have to integrate \(p \) over the desired set

\[\Pr[a < X < b] = \int_a^b p(x) \, dx \]
Joint distributions

- For two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$, their joint distribution is defined as
 \[P(x, y) := \Pr[X = x, Y = y] \]
- Non-negativity: $P(x, y) \geq 0$
- Normalization: $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(x, y) = 1$
- For example, assume we throw two fair six-sided dice and define $X := \text{“the number on the first die”}$ and $Y := \text{“the number on the second die”}$.
 \[\mathcal{X} = \mathcal{Y} = \{1, 2, 3, 4, 5, 6\} \]
 \[P(6, 6) = \Pr[X = 6, Y = 6] = \frac{1}{36} \]
Marginal and conditional distributions

Let $P(x, y)$ be a joint distribution of random variables X and Y.

- The **marginal distribution** of X is defined as

$$P(x) := \Pr[X = x] := \sum_{y \in \mathcal{Y}} P(x, y)$$

- The **conditional distribution** of X given that Y has a known value y is defined as

$$P(x|y) := \Pr[X = x|Y = y] := \frac{P(x, y)}{P(y)} \quad \text{(defined if } P(y) > 0)$$

- Note that for any fixed y, $P(x|y)$ is a distribution over x, i.e.

$$\sum_{x \in \mathcal{X}} P(x|y) = 1, \forall y \in \mathcal{Y}$$
The chain rule

- By definition of conditional distributions, we can always write a joint distribution of X and Y as a product of conditionals:

$$P(x, y) = P(x|y)P(y)$$

- We can do the same for an arbitrary number of random variables X_1, \ldots, X_n:

$$P(x_1, \ldots, x_n) = P(x_1|x_2, \ldots, x_n) \cdots P(x_{n-1}|x_n)P(x_n)$$
Bayes’ rule

- For two random variables X and Y, by definition of the conditional distribution of X given Y:

$$P(x|y) = \frac{P(x, y)}{P(y)}$$

- Also, by the chain rule:

$$P(x, y) = P(y|x)P(x)$$

- Combining the above we get Bayes’ rule:

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$
Independence

- Two random variables X and Y are called **independent**, if knowing the value of X does not give any additional information about the distribution of Y (and vice versa):

\[
P(x|y) = P(x)
\]
\[
\iff P(y|x) = P(y)
\]

- Equivalently, X and Y are independent if their joint distribution factorizes:

\[
P(x, y) = P(x|y)P(y) = P(x)P(y)
\]
IID

- IID := Independent and Identically Distributed

- Random variables X_1, \ldots, X_n are called IID if
 - Each of them has the same (marginal) distribution
 - They are mutually independent

- Note that if X_1, \ldots, X_n are IID, then

\[
P(x_1, \ldots, x_n) = P(x_1) \cdots P(x_n) = \prod_{i=1}^{n} P(x_i)
\]
Expectation

- The **expectation** of a random variable \(X \) is defined as

\[
\mu_X := E[X] := \sum_{x \in \mathcal{X}} xP(x)
\]

- Note that the expectation \(E[X] \) is **not** the same as the most likely value \(\max_{x \in \mathcal{X}} P(x) \).

- Can also be defined for a function \(f \) of \(X \):

\[
E[f(X)] := \sum_{x \in \mathcal{X}} f(x)P(x)
\]
The variance of a random variable X is defined as

$$\text{Var}[X] := E[(X - \mu_X)^2] := \sum_{x \in \mathcal{X}} (x - \mu_X)^2 P(x)$$

- $\text{Var}[X] \geq 0$

The standard deviation of X is defined as

$$\sigma_X := \sqrt{\text{Var}[X]}$$
Multidimensional moments

Let $X = (X_1, \ldots, X_n)$ be a vector of random variables.

- The expectation of X is defined as

 $$E[X] := (E[X_1], \ldots, E[X_n])$$

- The covariance of variables X_i and X_j is defined as

 $$\text{Cov}[X_i, X_j] := E[(X_i - \mu_{X_i})(X_j - \mu_{X_j})]$$

- $\text{Cov}[X_i, X_i] = \text{Var}[X_i]$
- X_i, X_j independent \Rightarrow $\text{Cov}[X_i, X_j] = 0$
- $\text{Cov}[X_i, X_j] > 0$ roughly means that X_i and X_j increase and decrease together.
- $\text{Cov}[X_i, X_j] < 0$ roughly means that when X_i increases X_j decreases (and vice versa).
Covariance matrix

For a random vector $X = (X_1, \ldots, X_n)$ we define its $n \times n$ covariance matrix as follows:

$$\Sigma_X = \begin{bmatrix}
\text{Var}[X_1] & \text{Cov}[X_1, X_2] & \cdots & \text{Cov}[X_1, X_n] \\
\text{Cov}[X_2, X_1] & \text{Var}[X_2] & \cdots & \text{Cov}[X_2, X_n] \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cov}[X_n, X_1] & \text{Cov}[X_n, X_2] & \cdots & \text{Var}[X_n]
\end{bmatrix}$$

- The diagonal elements are the variances of each random variable $\text{Cov}[X_i, X_i] = \text{Var}[X_i]$.
- Σ_X is symmetric, because $\text{Cov}[X_i, X_j] = \text{Cov}[X_j, X_i]$.
- Σ_X is positive semi-definite.
- What does it mean if Σ_X is diagonal?
Gaussian distribution (1-D)

- Random variable X with $\mathcal{X} = \mathbb{R}$
- Probability density function

$$p(x) := \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

- $E[X] = \mu$, $\text{Var}[X] = \sigma^2$
Gaussian Distribution (n-D)

- Random vector $\mathbf{X} = (X_1, \ldots, X_n)$ with $\mathcal{X} = \mathbb{R}^n$

- Probability density function

\[
p(\mathbf{x}) := \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mu)^\top \Sigma^{-1} (\mathbf{x} - \mu) \right)
\]

- $E[\mathbf{X}] = \mu$

- Σ is the covariance matrix of \mathbf{X} and $|\Sigma|$ is its determinant.
Data vs. distribution

- Be careful to distinguish between models (usually smooth parametric distributions) and data (sets of points).

- Machine learning:
 - Data = input
 - Distribution = model or assumption

- ML methods usually make some general assumptions about the distribution (e.g. a parametric family), then try to obtain ("infer") the specifics from the data available.

- Example:
 1. Modeling step: Assume a Gaussian distribution as model (parameterized by μ and σ).
 2. Inference step: Estimate parameters μ and σ from data.