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Problem 1 (Linear Regression and Ridge Regression):

Let D = {(x1,51), (X2,%2),--. (Xn,¥n)} where x; € R? and y; € R be the training data that you are given. As
you have to predict a continuous variable, one of the simplest possible models is linear regression, i.e. to predict
y as wlx for some parameter vector w € R%.> We thus suggest minimizing the following loss

oA 2
argmin R(w) = argmlnz —w’l x;)" . (1)
w
Let us introduce the n x d matrix X € R™*? with the x; as rows, and the vector y € R™ consisting of the scalars

y;. Then, (1) can be equivalently re-written as

argmin || Xw — y||?.
w
We refer to any w* that attains the above minimum as a solution to the problem.

(a) Show that if X7 X is invertible, then there is a unique w* that can be computed as w* = (XTX)f1 XTy.
(b) Show for n < d that (1) does not admit a unique solution. Intuitively explain why this is the case.

(c) Consider the case n > d. Under what assumptions on X does (1) admit a unique solution w*? Give an
example with n = 3 and d = 2 where these assumptions do not hold.

The ridge regression optimization problem with parameter A > 0 is given by

n
argminRRidgc( —argmln Z s —w’ XZ +)\WTW . (2)

w i=1

(d) Show that RRidge(w) is convex with regards to w. You can use the fact that a twice differentiable function
is convex if and only if its Hessian H € R%*? satisfies w Hw > 0 for all w € R? (is positive semi-definite).

e) Derive the closed form solution w%.. = (XTX + A\l -t XTy to (2) where I; denotes the identity matrix
Ridge
of size d x d.

(f) Show that (2) admits the unique solution W, for any matrix X. Show that this even holds for the cases
in (b) and (c) where (1) does not admit a unique solution w*.

(g) What is the role of the term Aw”'w in RRidge(w)? What happens to Wi;4,. as A — 0 and A — 00?

LWithout loss of generality, we assume that both x; and y; are centered, i.e. they have zero empirical mean. Hence we can neglect
the otherwise necessary bias term b.



Solution 1:

()

Note that
R(w) = [Xw — y|2 = (Xw - y)” (Xw — y) = w'X"Xw — 2w" X y +y7y.
The gradient of this function is equal to
VR(w) = 2XTXw — 2XTy.

Because R(w) is convex (formally proven in (d)), its optima are exactly those points that have a zero
gradient, i.e. those w* that satisfy X7 Xw* = XTy. Under the given assumption, the unique minimizer is

indeed equal to w* = (X7X) ™ XTy.

Consider the singular value decomposition X = UXVT where U is an unitary n x n matrix, V is a unitary
d x d matrix and X is a diagonal n x d matrix with the singular values of X on the diagonal. We then have

argmin ]:Z(w) = argmin [WTV22VTW — 2yTU2VTw]

Since V is unitary, we may rotate w using V to z = VT 'w and formulate the optimization problem in terms

of z, i.e.
d

argmin [z’ X%z — 2y" USz] = argminz (2707 — 2(U'y);z2i04]

z z i=1
where o; is the i entry in the diagonal of X. Note that this problem decomposes into d independent
optimization problems of the form

z; = argmin [ZQUE - 2(Uty)izai]

fori=1,2,...,d. Since each problem is quadratic and thus convex we may obtain the solution by finding
the root of the first derivative. For i = 1,2,...d we require that z; satisfies

zio? — (Uly);o; = 0.
For all i = 1,2,...d such that o; # 0, the solution z; is thus given by
(U'y)i

0;

%

For the case n < d, however, X has at most rank n as it is a n X d matrix and hence at most n of its
singular values are nonzero. This means that there is at least one index j such that ; = 0 and hence any
z; € R is a solution to the optimization problem. As a result the set of optimal solutions for z is a linear
subspace of at least one dimension. By rotating this subspace using V, i.e. w = Vz, it is evident that
the optimal solution to the optimization problem in terms of w is also a linear subspace of at least one
dimension and that thus no unique solution exists. Furthermore, since X has at most rank n, XTX is not
of full rank. As a result (X7X)~! does not exist and w* is ill-defined.

The intuition behind these results is that the “linear system” Xw ~ y is underdetermined as there are less
data points than parameters that we want to estimate.

We showed in (b) that the optimization problem admits a unique solution only if all the singular values of
X are nonzero. For n > d, this is the case if and only if X is of full rank, i.e. all the columns of X are
linearly independent. As an example for a matrix not satisfying these assumptions, any matrix with linearly
dependent dependent suffices, e.g.

1 =2
Xdegenerate = 0 0
-2 4



(d)

Because convex functions are closed under addition, we will show that each term in the objective is convex,

from which the claim will follow. Each data term (y; — w”x;)? has a Hessian x;x], which is positive
semi-definite because for any w € R? we have wlx;x!'w = (x'w;)? > 0 (note that x} w = wlx; are
scalars). The regularizer \w” w has the identity matrix Al  as a Hessian, which is also postive semi-definite

because for any w € R? we have wT'AI;w = A||w|? > 0, and this completes the proof.

The gradient of RRidgC(w) with respect to w is given by
V Riidge (W) = 2XT (Xw — y) 4 2\w.
Similar to (a), because Rgidge(W) is convex, we only have to find a point Whidge SUCh that
V Riidge(Whidge) = 2X7 (XWhigge — ¥) + 2AWfigge = 0.

This is equivalent to
(XTX + Ma)Whigee = X'y

which implies the required result
. -1
Whigge = (XTX + ML)~ XTy.
Note that XTX is a positive semi-definite matrix since Yw € R? : wIXTXw = >°" | [(Xw)i]2 >0,

which implies that it has non-negative eigenvalues. But then, X7X + \I; has eigenvalues bounded from
below by A > 0, which means that it is invertible and thus the optimum is uniquely defined.

The term Aw’w “biases’ the solution towards the origin, i.e. there is a quadratic penalty for solutions w
that are far from the origin. The parameter A\ determines the extend of this effect: As A — 0, RRidge(w)
converges to R(w) As a result the optimal solution wg;,,, approaches the solution of (1). As A — oo,
only the quadratic penalty w”'w is relevant and WRidge hence approaches the null vector (0,0, ...,0).



Problem 2 (Normal Random Variables):
Let X be a Normal random variable with mean p € R and variance 72 > 0, i.e. X ~ N(u,72). Recall that the
probability density of X is given by

L ~@w?/2r?

fx(x) = —e " , —oo<x < oo.

2T
Furthermore, the random variable Y given X = x is normally distributed with mean z and variance o2, ie.
Y|x=z ~ N(z,0%).

(a) Derive the marginal distribution of Y.

(b) Use Bayes' theorem to derive the conditional distribution of X given Y = y.

Hint: For both tasks derive the density up to a constant factor and use this to identify the distribution.
Solution 2:

As a prelude to both (a) and (b) we consider the joint density function fx y(z,y) of X and Y

1 (@ —p)?  (y—2)?
= X = = —_—
fxy(z,y) = fyix ¥l x) fx () 9ror P 2 ) + o
(A)
Using simple algebraic operations, we obtain
(A) (2 = 2px + p?)o? 4 (2? — 2y + y?) 72
- 5272
B (02 +72)2? — 22(0?p + 72y) + o2 pu? + 729>
- 5272
2 2 2 o272 o2 ptr2 2 o2 u+7? 2 2. 2 2,2
(U +T) T _2x(0{:+7_2y)+(012‘+72y) _(ﬁ) +0-/’[’ +Ty
= o272
2 2 2 2 2,12
(»”U - (02%2“ + 02774-729)> o2 + m2y% — w
= o272 + o272 :
02472

C
®) (©)

(a) The marginal density of Y is given by

fr(y) = / Fxy (@, y)de = / Frix WX = 2) fx(x)dz.

This is proportional to

2 2 2 2 2.2
+
f ( ) / 1 (.TJ - (;2:_7_2/1 + 02:_7_2 y)) J 1 02,u2 + 7_2y2 _ %
x [ exp| —= rexp | —=
vy R P 2 0‘22_:; P 2 0272
C
®) (©)



Note that (B) matches the functional form of a normal density for the variable . As a result, the first term
integrates to 07+/27/(02 + 72) and we thus only need to consider (C) to identify fy (y), i.e.

o2 72, 2
; 1| 022 4 7242 — ( U“;;sz)
v (y) xexp 5 0272
(©)
1 [(o*u? + o?72u% + o27%9y% + 749%) — (0% p® + 20272 uy + 7492)
=exp | —=
2| o?12(0? + 72)
1 [027242 — 20272y + o272y2
=exp | —=
2| o?12(0? + 72)
e (L[ v
2 | (02 +72) '

It can easily be seen that the marginal distribution of Y is the Normal distribution with mean p and variance
2 2
o+ 77

The conditional density of X given Y = y is proportional to the joint density function, i.e.

fX|Y(fE|Y = y) = fX]%//((z;y) X fX,Y(-Tay)-

Since (C) is independent of = we only need to consider (B) and have

2
2 2
1 ($*<0207+72N+a277+723/>)
fX|Y('T‘Y:y)O(eXp D) 52,2
T

(B)

Similarly to (a), it immediately follows that the conditional distribution of X given Y = y is the Normal dis-
tribution with =1+ ==y and variance 27 . Note that th i binati
ribution with mean ( -%— + 5=y ) and variance 57" Note that the mean is a convex combination

of 1 and the observation y.



Problem 3 (Bivariate Normal Random Variables):

Let X be a bivariate Normal random variable (taking on values in R?) with mean 1 = (1,1) and covariance
matrix 3 = (3 1). The density of X is then given by

—;ex —lx— Ty=tx -
150 = e o (305 k- )).

Find the conditional distribution of Y = X7 + X5 given Z = X; — X5 = 0.
Solution 3:

We present two approaches for this exercise:

APPROACH 1. Note that Z = 0 implies X; = X5. Furthermore by the definition of Y, we have X; = X5, =Y/2
given Z = 0. Hence the marginal density of Y given Z = 0 is proportional to

Frawlz =0 = PZ0D o g0y g | (13)]

We then have

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 23—0.

APPROACH 2. We define the random variable R as
Y 1 1
R-(2) -0 4)x
—_———
=A
By linearity of expectation, the mean ug of R is

E[R] — AE[X] = Ay — (2> .

The covariance matrix Xg of R is given by

Tr = E[(R - E[R])(R - E[R])"] = E[A(X - E[X])(X - E[X])"A]
= AE[(X - EX)(X —EX])T]AT = ATAT

()G )6 )
)(



Since X is multivariate Gaussian and R is an affine transformation of X, R is a bivariate Normal random variable
with mean ug and covariance matrix .2 The conditional density of Y given Z = 0 is then given by

fyiz(ylZ =0) = frz(6.0) fv,z(y,0)
() () ()
() s D)

I

@

>

ho}
/\/Tﬁ
= N

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 23—0.

2This result can be easily derived from the characteristic function of the multivariate Normal distribution. R is bivariate Normal
if and only if for any t € R?

E [eitTR] — oitTur—tTERt/2
This holds since the corresponding property holds for X with s = tT A, i.e.

E [eitTR} —F [eitTAX] —-F [6isTx] _ eisT,u—sTZs/Q _ eitTA,u—tTAEATt/Q _ eitTy.R—tTERt/Q.



