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Problem 1 (Linear Regression and Ridge Regression):

Let D = {(x1, y1), (x2, y2), . . . (xn, yn)} where xi ∈ Rd and yi ∈ R be the training data that you are given. As
you have to predict a continuous variable, one of the simplest possible models is linear regression, i.e. to predict
y as wTx for some parameter vector w ∈ Rd.1 We thus suggest minimizing the following loss

argmin
w

R̂(w) = argmin
w

n∑
i=1

(
yi −wTxi

)2
. (1)

Let us introduce the n×d matrix X ∈ Rn×d with the xi as rows, and the vector y ∈ Rn consisting of the scalars
yi. Then, (1) can be equivalently re-written as

argmin
w

‖Xw − y‖2.

We refer to any w∗ that attains the above minimum as a solution to the problem.

(a) Show that if XTX is invertible, then there is a unique w∗ that can be computed as w∗ =
(
XTX

)−1
XTy.

(b) Show for n < d that (1) does not admit a unique solution. Intuitively explain why this is the case.

(c) Consider the case n ≥ d. Under what assumptions on X does (1) admit a unique solution w∗? Give an
example with n = 3 and d = 2 where these assumptions do not hold.

The ridge regression optimization problem with parameter λ > 0 is given by

argmin
w

R̂Ridge(w) = argmin
w

[
n∑
i=1

(
yi − wTxi

)2
+ λwTw

]
. (2)

(d) Show that R̂Ridge(w) is convex with regards to w. You can use the fact that a twice differentiable function
is convex if and only if its Hessian H ∈ Rd×d satisfies wTHw ≥ 0 for all w ∈ Rd (is positive semi-definite).

(e) Derive the closed form solution w∗Ridge =
(
XTX + λId

)−1
XTy to (2) where Id denotes the identity matrix

of size d× d.

(f) Show that (2) admits the unique solution w∗Ridge for any matrix X. Show that this even holds for the cases
in (b) and (c) where (1) does not admit a unique solution w∗.

(g) What is the role of the term λwTw in R̂Ridge(w)? What happens to w∗Ridge as λ→ 0 and λ→∞?

1Without loss of generality, we assume that both xi and yi are centered, i.e. they have zero empirical mean. Hence we can neglect
the otherwise necessary bias term b.



Solution 1:

(a) Note that

R̂(w) = ‖Xw − y‖2 = (Xw − y)T (Xw − y) = wTXTXw − 2wTXTy + yTy.

The gradient of this function is equal to

∇R̂(w) = 2XTXw − 2XTy.

Because R̂(w) is convex (formally proven in (d)), its optima are exactly those points that have a zero
gradient, i.e. those w∗ that satisfy XTXw∗ = XTy. Under the given assumption, the unique minimizer is

indeed equal to w∗ =
(
XTX

)−1
XTy.

(b) Consider the singular value decomposition X = UΣVT where U is an unitary n×n matrix, V is a unitary
d×d matrix and Σ is a diagonal n×d matrix with the singular values of X on the diagonal. We then have

argmin
w

R̂(w) = argmin
w

[
wTVΣ2VTw − 2yTUΣVTw

]
Since V is unitary, we may rotate w using V to z = VTw and formulate the optimization problem in terms
of z, i.e.

argmin
z

[
zTΣ2z− 2yTUΣz

]
= argmin

z

d∑
i=1

[
z2i σ

2
i − 2(Uty)iziσi

]
where σi is the i entry in the diagonal of Σ. Note that this problem decomposes into d independent
optimization problems of the form

zi = argmin
z

[
z2σ2

i − 2(Uty)izσi
]

for i = 1, 2, . . . , d. Since each problem is quadratic and thus convex we may obtain the solution by finding
the root of the first derivative. For i = 1, 2, . . . d we require that zi satisfies

ziσ
2
i − (Uty)iσi = 0.

For all i = 1, 2, . . . d such that σi 6= 0, the solution zi is thus given by

zi =
(Uty)i
σi

.

For the case n < d, however, X has at most rank n as it is a n × d matrix and hence at most n of its
singular values are nonzero. This means that there is at least one index j such that σj = 0 and hence any
zj ∈ R is a solution to the optimization problem. As a result the set of optimal solutions for z is a linear
subspace of at least one dimension. By rotating this subspace using V, i.e. w = Vz, it is evident that
the optimal solution to the optimization problem in terms of w is also a linear subspace of at least one
dimension and that thus no unique solution exists. Furthermore, since X has at most rank n, XTX is not
of full rank. As a result (XTX)−1 does not exist and w∗ is ill-defined.

The intuition behind these results is that the “linear system” Xw ≈ y is underdetermined as there are less
data points than parameters that we want to estimate.

(c) We showed in (b) that the optimization problem admits a unique solution only if all the singular values of
X are nonzero. For n ≥ d, this is the case if and only if X is of full rank, i.e. all the columns of X are
linearly independent. As an example for a matrix not satisfying these assumptions, any matrix with linearly
dependent dependent suffices, e.g.

Xdegenerate =

 1 −2
0 0
−2 4

 .
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(d) Because convex functions are closed under addition, we will show that each term in the objective is convex,
from which the claim will follow. Each data term (yi − wTxi)

2 has a Hessian xix
T
i , which is positive

semi-definite because for any w ∈ Rd we have wTxix
T
i w = (xTi wi)

2 ≥ 0 (note that xTi w = wTxi are
scalars). The regularizer λwTw has the identity matrix λId as a Hessian, which is also postive semi-definite
because for any w ∈ Rd we have wTλIdw = λ‖w‖2 ≥ 0, and this completes the proof.

(e) The gradient of R̂Ridge(w) with respect to w is given by

∇R̂Ridge(w) = 2XT (Xw − y) + 2λw.

Similar to (a), because R̂Ridge(w) is convex, we only have to find a point w∗Ridge such that

∇R̂Ridge(w
∗
Ridge) = 2XT (Xw∗Ridge − y) + 2λw∗Ridge = 0.

This is equivalent to
(XTX + λId)w

∗
Ridge = XTy

which implies the required result

w∗Ridge =
(
XTX + λId

)−1
XTy.

(f) Note that XTX is a positive semi-definite matrix since ∀w ∈ Rd : wTXTXw =
∑n
i=1 [(Xw)i]

2 ≥ 0,
which implies that it has non-negative eigenvalues. But then, XTX + λId has eigenvalues bounded from
below by λ > 0, which means that it is invertible and thus the optimum is uniquely defined.

(g) The term λwTw “biases” the solution towards the origin, i.e. there is a quadratic penalty for solutions w
that are far from the origin. The parameter λ determines the extend of this effect: As λ → 0, R̂Ridge(w)

converges to R̂(w). As a result the optimal solution w∗Ridge approaches the solution of (1). As λ → ∞,

only the quadratic penalty wTw is relevant and w∗Ridge hence approaches the null vector (0, 0, . . . , 0).
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Problem 2 (Normal Random Variables):

Let X be a Normal random variable with mean µ ∈ R and variance τ2 > 0, i.e. X ∼ N (µ, τ2). Recall that the
probability density of X is given by

fX(x) =
1√
2πτ

e−(x−µ)
2/2τ2

, −∞ < x <∞.

Furthermore, the random variable Y given X = x is normally distributed with mean x and variance σ2, i.e.
Y |X=x ∼ N (x, σ2).

(a) Derive the marginal distribution of Y .

(b) Use Bayes’ theorem to derive the conditional distribution of X given Y = y.

Hint: For both tasks derive the density up to a constant factor and use this to identify the distribution.

Solution 2:

As a prelude to both (a) and (b) we consider the joint density function fX,Y (x, y) of X and Y

fX,Y (x, y) = fY |X(y|X = x)fX(x) =
1

2πστ
exp

−1

2

 (x− µ)2

τ2
+

(y − x)2

σ2︸ ︷︷ ︸
(A)


 .

Using simple algebraic operations, we obtain

(A) =
(x2 − 2µx+ µ2)σ2 + (x2 − 2xy + y2)τ2

σ2τ2

=
(σ2 + τ2)x2 − 2x(σ2µ+ τ2y) + σ2µ2 + τ2y2

σ2τ2

=

(
σ2 + τ2

) [
x2 − 2x

(
σ2µ+τ2y
σ2+τ2

)
+
(
σ2µ+τ2y
σ2+τ2

)2
−
(
σ2µ+τ2y
σ2+τ2

)2]
+ σ2µ2 + τ2y2

σ2τ2

=

(
x−

(
σ2

σ2+τ2µ+ τ2

σ2+τ2 y
))2

σ2τ2

σ2+τ2︸ ︷︷ ︸
(B)

+
σ2µ2 + τ2y2 − (σ2µ+τ2y)

2

σ2+τ2

σ2τ2︸ ︷︷ ︸
(C)

.

(a) The marginal density of Y is given by

fY (y) =

∫
R
fX,Y (x, y)dx =

∫
R
fY |X(y|X = x)fX(x)dx.

This is proportional to

fY (y) ∝
∫
R

exp

−1

2


(
x−

(
σ2

σ2+τ2µ+ τ2

σ2+τ2 y
))2

σ2τ2

σ2+τ2︸ ︷︷ ︸
(B)


 dx exp

−1

2

σ2µ2 + τ2y2 − (σ2µ+τ2y)
2

σ2+τ2

σ2τ2︸ ︷︷ ︸
(C)


 .
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Note that (B) matches the functional form of a normal density for the variable x. As a result, the first term
integrates to στ

√
2π/(σ2 + τ2) and we thus only need to consider (C) to identify fY (y), i.e.

fY (y) ∝ exp

−1

2

σ2µ2 + τ2y2 − (σ2µ+τ2y)
2

σ2+τ2

σ2τ2︸ ︷︷ ︸
(C)




= exp

(
−1

2

[
(σ4µ2 + σ2τ2µ2 + σ2τ2y2 + τ4y2)− (σ4µ2 + 2σ2τ2µy + τ4y2)

σ2τ2(σ2 + τ2)

])
= exp

(
−1

2

[
σ2τ2µ2 − 2σ2τ2µy + σ2τ2y2

σ2τ2(σ2 + τ2)

])
= exp

(
−1

2

[
(µ− y)2

(σ2 + τ2)

])
.

It can easily be seen that the marginal distribution of Y is the Normal distribution with mean µ and variance
σ2 + τ2.

(b) The conditional density of X given Y = y is proportional to the joint density function, i.e.

fX|Y (x|Y = y) =
fX,Y (x, y)

fY (y)
∝ fX,Y (x, y).

Since (C) is independent of x we only need to consider (B) and have

fX|Y (x|Y = y) ∝ exp

−1

2


(
x−

(
σ2

σ2+τ2µ+ τ2

σ2+τ2 y
))2

σ2τ2

σ2+τ2︸ ︷︷ ︸
(B)


 .

Similarly to (a), it immediately follows that the conditional distribution of X given Y = y is the Normal dis-

tribution with mean
(

σ2

σ2+τ2µ+ τ2

σ2+τ2 y
)

and variance σ2τ2

σ2+τ2 . Note that the mean is a convex combination

of µ and the observation y.
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Problem 3 (Bivariate Normal Random Variables):

Let X be a bivariate Normal random variable (taking on values in R2) with mean µ = (1, 1) and covariance
matrix Σ = ( 3 1

1 2 ). The density of X is then given by

fX(x) =
1√

(2π)2 det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Find the conditional distribution of Y = X1 +X2 given Z = X1 −X2 = 0.

Solution 3:

We present two approaches for this exercise:

Approach 1. Note that Z = 0 implies X1 = X2. Furthermore by the definition of Y , we have X1 = X2 = Y/2
given Z = 0. Hence the marginal density of Y given Z = 0 is proportional to

fY |Z(y|Z = 0) =
fY,Z(y, 0)

fZ(0)
∝ fY,Z(y, 0) ∝ fX

[(
y/2
y/2

)]
.

We then have

fX

[(
y/2
y/2

)]
∝ exp

(
−1

2

(
y
2 − 1
y
2 − 1

)T (
3 1
1 2

)−1(y
2 − 1
y
2 − 1

))

= exp

(
−1

2

(
y
2 − 1
y
2 − 1

)T
1

5

(
2 −1
−1 3

)(
y
2 − 1
y
2 − 1

))

= exp

(
−1

2

(y − 2)2

20
3

)
.

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 20
3 .

Approach 2. We define the random variable R as

R =

(
Y
Z

)
=

(
1 1
1 −1

)
︸ ︷︷ ︸

=A

X.

By linearity of expectation, the mean µR of R is

E[R] = AE[X] = Aµ =

(
2
0

)
.

The covariance matrix ΣR of R is given by

ΣR = E[(R− E[R])(R− E[R])T ] = E[A(X− E[X])(X− E[X])TAT ]

= AE[(X− E[X])(X− E[X])T ]AT = AΣAT

=

(
1 1
1 −1

)(
3 1
1 2

)(
1 1
1 −1

)
=

(
4 3
2 −1

)(
1 1
1 −1

)
=

(
7 1
1 3

)
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Since X is multivariate Gaussian and R is an affine transformation of X, R is a bivariate Normal random variable
with mean µR and covariance matrix ΣR.2 The conditional density of Y given Z = 0 is then given by

fY |Z(y|Z = 0) =
fY,Z(y, 0)

fZ(0)
∝ fY,Z(y, 0)

∝ exp

(
−1

2

(
y − 2

0

)T (
7 1
1 3

)−1(
y − 2

0

))

= exp

(
−1

2

(
y − 2

0

)T
1

20

(
3 −1
−1 7

)(
y − 2

0

))

= exp

(
−1

2

(y − 2)2

20
3

)
.

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 20
3 .

2This result can be easily derived from the characteristic function of the multivariate Normal distribution. R is bivariate Normal
if and only if for any t ∈ R2

E
[
eit

T R
]
= eit

T µR−tT ΣRt/2.

This holds since the corresponding property holds for X with s = tTA, i.e.

E
[
eit

T R
]
= E

[
eit

T AX
]
= E

[
eis

T X
]
= eis

T µ−sT Σs/2 = eit
T Aµ−tT AΣAT t/2 = eit

T µR−tT ΣRt/2.
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