
LAS Group, Institute for Machine Learning

Dept. of Computer Science, ETH Zürich

Prof. Dr. Andreas Krause

Web: http://las.inf.ethz.ch/teaching/lis-s16/

Email questions to:

Felix Berkenkamp, befelix@inf.ethz.ch

Exercises
Learning and Intelligent Systems
SS 2016

Series 3, April 5th, 2017

(ANNs)

It is not mandatory to submit solutions and sample solutions will be published in two weeks. If you
choose to submit your solution, please send an e-mail from your ethz.ch address with subject Exercise3
containing a PDF (LATEX or scan) to lis2016@lists.inf.ethz.ch until Sunday, Apr 17th 2017.

Problem 1 (Neural network derivatives):

Consider the following neural network with two logistic hidden units h1, h2, and three inputs x1, x2, x3. The
output neuron f is a linear unit, and we are using the squared error cost function
E = (y − f)2. The logistic function is defined as φ(x) = 1/ (1 + e−x).

(a) Consider a single training example x = [x1, x2, x3] with target output (label) y. Write down the sequence
of calculations required to compute the squared error cost (called forward propagation).

(b) A way to reduce the number of parameters to avoid overfitting is to tie certain weights together, so that
they share a parameter. Suppose we decide to tie the weights w1 and w4, so that w1 = w4 = wtied. What
is the derivative of the error E with respect to wtied, i.e. ∇wtied

E?

Solution 1:

(a) Solution: h1 = φ(x1w1 + x2w3 + x3w5)

h2 = φ(x1w3 + x2w4 + x3w6)

f = u1h1 + u2h2

(b)

∂E

∂wtied
=
dE

df

(
∂f

∂h1

∂h1
∂wtied

+
∂f

∂h2

∂h2
∂wtied

)
=− 2(y − f)

[
u1φ

′
(x1w1 + x2w3 + x3w5)x1 + u2φ

′
(x1w3 + x2w4 + x3w6)x2

]
=− 2(y − f)

[
u1h1(1− h1)x1 + u2h2(1− h2)x2

]

Problem 2 (Building an RBF Network):

Radial basis function (RBF) networks are artificial neural networks that use radial basis functions as activation
functions. They typically have three layers: an input layer, a hidden layer with a RBF activation function and
a linear output layer. Hence, the output of the network is a linear combination of radial basis functions of the
inputs and neuron parameters.

The input can be modeled as a vector of real numbers x ∈ Rn. Each output of the network Yj : Rn → R is then
given by

Yj =

N∑
i=1

wij exp(−1

2
(x− µi)TΣ−1i (x− µi)),

where N is the number of neurons in the hidden layer, µi and Σi are the mean vector and covariance matrix for
neuron i, and wij is the weight of neuron i in the linear output neuron. In the basic form all inputs are connected
to each hidden neuron.

Now, let us consider the following dataset:

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Class%1%
Class%2%
Class%3

X1

X2

(a) Draw an RBF network that perfectly classifies the given data points. Determine suitable values for the mean
and covariance of each neuron in the hidden layer (µi,Σi and the appropriate weights wij) in the network.

Hint: You can assume that Σi is a multiple of the identity matrix, so that Yj =
∑N
i=1 wij exp(− ||x−µi||2

2σ2
i

).

2

(b) Argue why your network classifies the data points correctly. Pick one one of the data points and calculate
the network output.

Solution 2:

(a) We use Gaussian RBFs with no offset (”dummy”) inputs. We model each cluster Ci, i ∈ {1, · · · , 4} with
a Gaussian distribution. For class 1, we consider 2 separate clusters with mean µ1 = [0.3, 0.3]T and
µ2 = [0.85, 0.65]T . Similarly, for class 2, we consider a Gaussian distributions with mean µ3 = [0.3, 0.8]
and for class 3, we consider a Gaussian distribution with µ4 = [0.7, 0.3]T . For all hidden (RBF) units, σ =
0.1 to get an appropriate separation between high activation for inputs from within the relevant cluster and
low activation for other inputs.

The output neurons are linear neurons. The network output is defined as the number of the output neuron
with the greatest activation (1, 2, or 3).

(b) This network uses four RBF (hidden-layer) neurons whose reference vectors are placed in the centers of
the four clusters in the input space. Hidden-layer neurons 1 and 2 yield greatest responses for inputs from
class 1, neuron 3 for class 2, and neuron 4 for class 3. The output-layer weights are chosen to reflect these
relationships; connections between hidden-layer neurons and output neurons for the desired output are set
to 1, and all other output-layer weights are set to 0. This way, any input from within one of the four clusters
will give the desired output value the highest activation.

For example, let us pick the exemplar with input vector x = [0.4, 0.7]T and desired output 2. For a given
cluster Ci, the activation of each RBF neuron is computed with a Gaussian distribution as follows:

p(x ∈ Ci) ∝ exp

(
− (x− µi)2

2σ2
i

)
Thus, we get the following outputs from the RBF neurons:

p(x ∈ C1) ∝ exp
(
− (0.4−0.3)2+(0.7−0.3)2

2×0.12

)
= 0.000203.

p(x ∈ C2) ∝ exp
(
− (0.4−0.85)2+(0.7−0.65)2

2×0.12

)
= 0.000013.

3

p(x ∈ C3) ∝ exp
(
− (0.4−0.3)2+(0.7−0.8)2

2×0.12

)
= 0.368.

p(x ∈ C4) ∝ exp
(
− (0.4−0.7)2+(0.7−0.3)2

2×0.12

)
= 0.000004.

Given the output weights, we get the following activations of the output neurons:

Output 1 = 0.000203 + 0.000013 = 0.000216.
Output 2 = 0.368.
Output 3 = 0.000004.

Clearly, the output of the network is 2, which is the desired output for the given exemplar.

4

