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Problem 1 (EM for Näıve Bayes):

Assume that you want to train a näıve Bayes model on data with missing class labels. Specifically, there are
k binary variables X1, . . . Xk corresponding to the features, and a variable Y taking on values in {1, 2, . . . ,m}
denoting the class. Let us denote the set of model parameters as P (Xi = 1|Y = y) = θi|y and P (Y = y) = θy.

You are given n data points D = {(x1, y1), ..., (xn, yn)} where xi ∈ {0, 1}k and yi ∈ {1, 2, . . . ,m,×}. The value
× means that the label of the data point is missing.

• Write down the log-likelihood `(θ) of the data as a function of the parameters θ.

• Recall that the E-step of the EM algorithm computes the posterior over the unknown variables when we fix
the parameters θ. Compute these probabilities γj(xi) = P (Y = j | xi; θ) for j s.t. yi = ×.

• Once we have the quantities γj(·), we can compute the M-step update, which is computed as the maximizer
θ∗ of

∑n
i=1

∑m
j=1 γj(xi) logP (xi, yi = j; θ). Show how to compute θ∗. Note that there are constraints on

θ∗ to make sure that the distributions are valid (non-negative and sum up to 1).

Problem 2 (EM for a 1D Laplacian Mixture Model):

In this problem you will derive the EM algorithm for a one-dimensional Laplacian mixture model. You are given
n observations x1, . . . , xn ∈ R and we want to fit a mixture of m Laplacians, which has the following density

f(x) =

m∑
j=1

πjfL(x;µj , βj), (1)

where fL(x;µj , βj) = 1
2βj

e
− 1
βj
|x−µj |

, and the mixture weights πj are a convex combination, i.e. πj ≥ 0 and∑m
j=1 πj = 1. For simplicity assume that the scale parameters βj > 0 are known beforehand and thus fixed.

• Introduce latent variables so that we can apply the EM procedure.

• Analogously to the previous question, write down the steps of the EM procedure for this model. If some
updates cannot be written analytically, give an approach on how to compute them.

(Hint: Recall a property of functions that makes them easy to optimize.)



Problem 3 (A different perspective on EM 1):

In this question you will show that EM can be seen as iteratively maximizing a lower bound on the log-likelihood.
We will treat any general model P (X,Z) with observed variables X and latent variables Z. For the sake of
simplicity, we will assume that Z is discrete and takes on values in {1, 2, . . . ,m}. If we are observe X = x, the
goal is to maximize the log-likelihood

`(θ) = logP (x; θ) = log

m∑
z=1

P (x, z; θ)

with respect to the parameter vector θ. In what follows we will denote by Q(Z) any distribution over the latent
variables.

• Show that if Q(z) > 0 when P (x, z) > 0, then it holds that (Hint: Consider using Jensen’s inequality)

`(θ) ≥ EQ[logP (X,Z)]−
m∑
z=1

Q(z) logQ(z).

Hence, we have a bound on the log-likelihood parametrized by a distribution Q(Z) over the latent variables.

• Show that for a fixed θ, the lower bound is maximized for Q∗(Z) = P (Z | X; θ). Moreover, show that the
bound is exact (holds with equality) for this specific distribution Q∗(Z).

(Hint: Do not forget to add Lagrange multipliers to make sure that Q∗ is a valid distribution.)

• Show that if we optimize with respect to Q and θ in an alternating manner, that this corresponds to the
EM procedure. Discuss what this implies for the convergence properties of EM.

1This is an advanced question.
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