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1. Gibbs sampling

In this exercise, you will implement a Gibbs sampling algorithm for performing approximate
inference in Bayesian networks. Although using a factor graph is not necessary for Gibbs
sampling, we will use the already available factor graph representation from the previous ex-
ercise to conveniently acquire the Markov blanket of each variable. �at way, all information
required to compute the posterior distribution of a variable v given some values for all other
variables, is contained in the CPTs of the neighboring factor nodes N (v).

More concretely, let x−v be the set of all variables except for v, and s−v be the value of those
variables at the current iteration. Similarly, let xf\v, sf\v be all variables that participate in
factor f except for v, and sf\v be the values thereof. �en, to update the value of v you will
have to draw from the posterior

P (v = d | x−v = s−v) =
1

Z

∏
f∈N (v)

f(v = d,xf\v = sf\v),

where Z is a normalization factor. In practice, you will compute the above product (without
the 1/Z part) for all d ∈ dom(v), then normalize to get a proper distribution, and �nally draw
from that distribution to obtain a new value for v.

You are provided some skeleton Python code in the .zip �le accompanying this document.
Take the following steps for this exercise.

(i) Install the Python dependencies listed in README.txt, if your system does not already
satisfy them. A�er that, you should be able to run demo.py and produce some plots,
albeit wrong ones for now.

(ii) Implement the missing code in sampling.py marked with TODO. In particular, you have
to �ll in the part that computes the posterior distribution discussed above, as well as the
part that picks a variable and updates the state of the Gibbs sampler.

(iii) If your implementation is correct, you should get (approximately) correct results for the
naive Bayes model of the demo �le that represents the coin �ipping network of exercise
2 in Problem Set 2.

(iv) Now, you can try out your Gibbs sampler on the earthquake network of the previous
exercise. Compare your results to those you obtained using belief propagation. �ere
are three parameters you can tune:

• �e starting state of the Gibbs sampler. By default, it is created by drawing inde-
pendent and uniformly random values for each variable.
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Figure 1: Bayesian network for variable elimination.

• �e length of the burn-in period, during which the state is updated, but not saved.
�erefore, anything sampled during this stage has no e�ect on the approximate
marginals computed a�erwards.

• �e function used to obtain the approximate marginals that are plo�ed. By default,
this function is a cumulative average, i.e., it computes the approximate marginal
distribution of a variable at step i by looking at the average number of occurences
of each value of that variable among the samples obtained by the algorithm up
to step i. A simple modi�cation would be to only use every k-th sample when
computing these averages, since successive samples are heavily correlated.

2. Variable elimination

You are given the Bayesian network shown in Figure 1.

(i) Create a factor graph corresponding to the given network.

(ii) Suppose you want to compute P (C | I = i) using variable elimination. Consider-
ing the variable ordering A,B,C,D,E, F,G,H, I, J , determine the factors that are re-
moved and those that are created at each step of the algorithm. For example, if we de�ne
φAB(A,B) = P (A)P (B | A), the �rst step would be as shown below.

Current variable Factors removed Factor introduced

A φAB(A,B) φ1(A,B)
...

...
...
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3. Markov chains and detailed balance

Assume that you are given a Markov chain with state space Ω and transition matrix T , which
is de�ned for all x, y ∈ Ω and t ≥ 0 as T (x, y) := P (Xt+1 = y | Xt = x). Furthermore, let π
be the stationary distribution of the chain.

(i) Show that, if for some t the current state Xt is distributed according to the stationary
distribution and additionally the chain satis�es the detailed balance equations

π(x)T (x, y) = π(y)T (y, x), for all x, y ∈ Ω,

then the following holds for all k ≥ 0 and x0, . . . , xk ∈ Ω:

P (Xt = x0, . . . , Xt+k = xk) = P (Xt = xk, . . . , Xt+k = x0).

(�is is why a chain that satis�es detailed balance is called reversible.)

(ii) Show that, if T is a symmetric matrix, then the chain satis�es detailed balance, and the
uniform distribution on Ω is stationary for that chain.

4. Belief propagation on tree factor graphs*

In this exercise we will prove that the belief propagation algorithm converges to the exact
marginals a�er a �xed number of iterations given that the factor graph is a tree, that is, given
that the original Bayesian network is a polytree.

We will assume that the factor graph contains no single-variable factors. (You have already
seen that if those exist, they can easily be incorporated into multi-variable factors without
increasing the complexity of the algorithm.) Since the factor graph is a tree, we will designate
a variable node, say a, as the root of the tree. We will consider subtrees T[rt], where r and t are
adjacent nodes in the factor graph and t is closer to the root than r, which are of two types:

• if r is a factor node (and t a variable node), then T[rt] denotes a subtree that has t as its
root, contains the whole subtree under r and, additionally, the edge {r, t},

• if r is a variable node (and t a factor node), then T[rt] denotes the whole subtree under r
with r as its root.

See Figure 2 for two example subtrees, one of each type. �e depth of a tree is de�ned as the
maximum distance between the root and any other node. Note that, both types of subtrees
T[rt] de�ned above have always depths that are even numbers.

We will use the subscript notation [rt] to refer to quantities constrained to the subtree T[rt].
In particular, we denote by F[rt] the set of factors in the subtree and by P[rt](xv) the marginal
distribution of v when we only consider the nodes of the subtree. More concretely, if r is a
variable node, by the sum rule we get

P[rt](xr) '
∑

x[rt]\{r}

∏
f∈F[rt]

f(xf ), (1)
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Figure 2: An example factor graph and two of its subtrees.

where ' denotes equality up to a normalization constant.

Remember the form of the messages passed between variable and factor nodes at each iteration
of the algorithm:

µ
(t+1)
v→f (xv) :=

∏
g∈N (v)\{f}

µ(t)g→v(xv) (2)

µ
(t+1)
f→v (xv) :=

∑
xf\{v}

f(xf )
∏

w∈N (f)\{v}

µ
(t)
w→f (xw). (3)

We also de�ne the estimated marginal distribution of variable v at iteration t as

P̂ (t)(xv) :=
∏

g∈N (v)

µ(t)g→v(xv). (4)

Our ultimate goal is to show that the estimated marginals are equal to the true marginals for
all variables a�er a number iterations. However, we will �rst consider the rooted version of the
factor graph and show that the previous statement holds for the root node a. More concretely,
if we denote variable nodes with v and factor nodes with f , we will show using induction that
for all subtrees T[fv] of depth τ , it holds that, for all t ≥ τ ,

µ
(t)
f→v(xv) ' P[fv](xv). (5)

(i) Consider the base case of T[fv] being a subtree of depth τ = 2 (see Figure 3a). Show that
(5) holds in this case for all t ≥ 2.
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Figure 3: �e three cases considered in the proof by induction.

(ii) Now, assume that (5) holds for all subtrees of depth ≤ τ . As a �rst step, show that for
any subtree T[vf ] of depth τ (see Figure 3b) it holds that, for all t ≥ τ + 1,

µ
(t)
v→f (xv) ' P[vf ](xv).

(iii) Using the result of the previous step, show that, for any subtree T[fv] of depth τ ′ = τ+2,
(5) holds for all t ≥ τ ′ (see Figure 3c).

(iv) Show that, if the factor graph rooted at a has depth d, then, for all t ≥ d,

P̂ (t)(xa) ' P (xa).

(v) To generalize the statement above, assume that the factor graph has diameterD, i.e., the
maximum distance between any two nodes in the graph is D. Show that for all t ≥ D
the estimated marginal of any variable v is exact, that is,

P̂ (t)(xv) ' P (xv).
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