
Probabilistic Artificial Intelligence
Final Exam
Jan 27, 2015

Time limit: 120 minutes
Number of pages: 16
Total points: 100

You can use the back of the pages if you run out of space. Collaboration on the exam is strictly for-
bidden.

(1 point) Please �ll in your name and student ID.

1. Logic (17 points)

a. Propositional logic

(i)(4 points) Write the following two propositional formulas in conjunctive normal form:

• (A ∨B)⇒ C .
• ¬(A⇒ C).
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(ii)(4 points) Prove, using resolution, that (A⇒ C) can be derived from (A ∨B)⇒ C .

b. First-order logic

For this part, use the following �rst-order vocabulary:

• T , a binary relation that denotes who teaches whom. For two variables x and y, the formula
T (x, y) means that x teaches y.

• M , a unary relation, for denoting math students. For a variable x, the formula M(x) means
that x is a math student.

• CS , a unary relation, for denoting computer science students. For a variable x, the formula
CS (x) means that x is a computer science student.

(i)(6 points) Express the following statements using �rst-order logic. You may assume that all elements of
the universe are students. (Note that there might be students that are neither math nor computer
science students.)

• Every student teaches some student.
• Every student teaches exactly one student.
• No one is both a math student and a computer science student.
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(ii)(3 points) Describe a model that satis�es all statements of part (i) and, additionally, satis�es the following
formula:

∀x∀y∀z (T (x, z) ∧ T (y, z)⇒ x = y) .
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2. Robot on a Tape (15 points)

A robot moves along the one-dimensional tape shown in the �gure below, where cells 1, . . . , 4 are
free, while cells 0 and 5 are blocked. At each time step t, the robot occupies positionXt and uses two
sensors to obtain observations Lt and Rt about the le� and right neighboring cells respectively. �e
values of the observations are either F (free) or B (blocked), but, since the sensors are noisy, each of
them is only correct with probability a < 1, independently of each other and across time steps t. At
each step, the robot moves uniformly at random to one of its neighboring cells. (If the target cell is
blocked, no movement is performed.)

0 1 2

R

3 4 5

(i)(7 points) Assume that the position of the robot at time t is Xt = 3. A�er one move, the robot observes
Lt+1 = F and Rt+1 = B. Compute the posterior distribution of the robot’s new position Xt+1.
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(ii)(4 points) Draw a Bayesian network that illustrates the relationships between the random variables asso-
ciated with each of three consecutive time steps of the above setup.

(iii)(4 points) Now, suppose that at each time step, the robot either continues moving along the same direction
of its last move, or randomly picks a new direction among the two possible. Draw a Bayesian
network representing this new setup. If you use new variables, brie�y describe how they would
be incorporated into the conditional probability tables of the network.
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3. d-Separation (12 points)

Given the Bayesian network shown below, �nd a minimal set Si of variables that have to be observed,
so that each of the following d-separation properties hold. Minimal means that removing any ele-
ments from Si will make the statement false. Note that Si can be ∅, if the property holds without
any additional observations. Brie�y explain your answers. (We use d-sep(X;Y | Z) to denote that
X is d-separated from Y , given a set of observed variables Z .)

A B

D

C

E

F

(i)(4 points) d-sep(A;E | S1)
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(ii)(4 points) d-sep(A;E | F, S2)

(iii)(4 points) d-sep(B;F | D, S3)
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4. Inference in Bayesian Networks (22 points)

Assume that we have converted a Bayesian network to the factor graph shown below. �e structure
of the factor graph implies that the joint distribution factorizes as follows:

P (A,B,C,D,E) ∝ φ1(A,B,C)φ2(B,D)φ3(B,E).

All random variables are binary and the factors are de�ned as follows:

φ1(A = a,B = b, C = c) =

{
0 if c = 0

a+ b+ c if c = 1

φ2(B = b,D = d) = b+ d

φ3(B = b, E = e) = b+ e.

Assume that at the t-th iteration of the belief propagation algorithm themessages shown in the �gure
below are exchanged between variable and factor nodes in the graph. Each vector (v0, v1) de�nes
an (unnormalized) message, for which v0 corresponds to value 0 and v1 corresponds to value 1. For
example, µ(t)φ1→B(0) = 3, µ(t)φ1→B(1) = 2, and µ(t)B→φ1(0) = 1, µ(t)B→φ1(1) = 2.

A

B

C

D

E

φ1

φ2

φ3

(1, 1)

(2, 3)(3, 2)

(1, 2)

(5, 1)

(2, 5)

(1, 3)

(4, 1)

(2, 2)

(1, 2)

(2, 4)

(1, 2)

(3, 2)

(1, 1)

(i)(2 points) Will belief propagation converge on the above factor graph? Brie�y explain.
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(ii)(4 points) From the provided messages compute the approximate marginal distribution of B.

(iii)(4 points) Compute the message µ(t+1)
B→φ2 shown in orange. (You do not have to normalize.)
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(iv)(8 points) Compute the message µ(t+1)
φ1→B shown in blue. (You do not have to normalize.)

(v)(4 points) Assume that we are running a Gibbs sampler on the same factor graph and the last sample we
drew is (A = 0, B = 0, C = 1, D = 1, E = 1). Now, we want to update the value of variable A.
Compute the distribution from which we should draw the new value of A.
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5. WhoWants to Be a ‘Hundredaire’ (15 points)

Consider the imaginary TV game show “Who wants to be a hundredaire”, where the host asks a
series of questions that, if answered correctly, lead to a reward. If the participant does not want to
a�empt a question a�er seeing it, she has the option of taking her current reward and leaving the
show. If she answers a question incorrectly, she has to leave the show with 0 reward. Consider such
a game with three questions in sequence worth 1CHF, 10CHF, 100CHF respectively. As the questions
are progressively more di�cult, the probability that the corresponding question can be answered
correctly is 0.5, 0.2, 0.05 respectively.

(i)(5 points) Draw the MDP for this game annotating the transitions, transition probabilities and rewards.
(Hint: You may wish to associate rewards with state transitions, i.e., dependent not just on the action
and state in which it was taken, but also on where the player moves to.)
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(ii)(10 points) Since the game has at most three rounds, we can consider the problem of determining the optimal
expected reward as a �nite horizon (T = 3), undiscounted MDP. In such MDPs, one can obtain
the optimal policy via a variant of the value iteration / dynamic programming algorithm discussed
in the lecture.
De�ne Vt(s) as the optimal value of state s, assuming that the game ends a�er t rounds. Note that
V0(s) = 0 for all states s, and for t ≥ 1, Vt(s) = maxa

∑
s′ P (s

′ | a, s)[r(s, a, s′) + Vt−1(s
′)].

Use this identity to compute the optimal policy.
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6. Learning Bayesian Networks (8 points)

Suppose you want to learn a Bayesian network over a set of random variables. You want to select
the best model among the six structures shown below. First, you use your training data to perform
maximum likelihood estimation of the parameters of each of the networks. �en, for each of the
learned networks, you evaluate the likelihood of the training data Ltrain, and the likelihood of test
dataLtest, i.e., data drawn independently from the same distribution as the training data, but not used
to train the model. Both results are speci�ed below each structure.

A

B C

(a)
Ltrain = 0.001
Ltest = 0.0008

A

B C

(b)
Ltrain = 0.013
Ltest = 0.011

A

B C

(c)
Ltrain = 0.02
Ltest = 0.018

A

B C

(d)
Ltrain = 0.015
Ltest = 0.012

A

B C

(e)
Ltrain = 0.02
Ltest = 0.018

A

B C

(f)
Ltrain = 0.025
Ltest = 0.01

(i)(4 points) Among the six candidate structures, structure (c) and structure (e) have identical likelihoods.
Explain why this is the case. (Justify your answer mathematically.)
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(ii)(4 points) In comparison to structure (b) − (e), why does structure (f) have the highest likelihood on
training data, but low likelihood on test data?
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7. Q-Learning (10 points)

Consider a grid world, where Pacman wants to learn a policy to maximize its reward. �e world is
modeled as a deterministic MDP initially unknown to Pacman.

All shaded states are terminal states, i.e., the MDP terminates upon reaching any of those states. At
the other states, there are 4 possible actions: Up, Down, Le�, Right, which deterministically move
Pacman to the corresponding neighboring state (or have Pacman stay in place, if the action tries to
move out of the grid). An action receives reward 0, unless it results in moving to one of the shaded
states, in which case, the corresponding reward is awarded during that transition.

1 80

−1002 −80 100

25

A

3

B C D

�e agent starts from the top le� corner (A1) and you are given the following episodes from runs of
the agent through this grid-world. Each line of an episode is a tuple (s, a, s′, r), containing the state
s before transition, action a taken, state s′ a�er transition, and reward r received.

(i)(10 points) Assume the discount factor is γ = 0.5 and the learning rate for Q-learning is α = 0.5. All
Q-values are initialized to 0. A�er Q-learning updates speci�ed by the below episodes, write
down the Q-values for the following state-action pairs: (B1, Right), (B2, Down), (C1, Right), (C3,
Right). (Hint: You only need to write down theQ-values that have been updated, that is, the non-zero
values.)

Episode 1 Episode 2 Episode 3 Episode 4

A1, Right, B1, 0 A1, Right, B1, 0 A1, Right, B1, 0 A1, Right, B1, 0
B1, Right, C1, 0 B1, Down, B2, 0 B1, Down, B2, 0 B1, Down, B2, 0
C1, Right, D1, 80 B2, Down, B3, 0 B2, Down, B3, 0 B2, Down, B3, 0

B3, Right, C3, 0 B3, Le�, A3, 25 B3, Right, C3, 0
C3, Right, D3, 0 C3, Up, C2, −80
D3, Up, D2, 100
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