
Probabilistic Artificial Intelligence
Final Exam
Feb 2, 2016

Time limit: 120 minutes
Number of pages: 19
Total points: 100

You can use the back of the pages if you run out of space.
Collaboration on the exam is strictly forbidden.

(1 point) Please fill in your student ID and fullname (LASTNAME, FIRSTNAME) in all capital letters.

1. Propositional and First-order Logic (12 points)

A minesweeper world is a rectangular grid of m squares with n invisible mines scattered among them.
Each square contains at most 1 mine. Any square may be probed by the minesweeper; if the probed
square does not contain a mine, then a number from 0-8 will be revealed, indicating the number of
mines that are directly or diagonally adjacent. The minesweeper has to find all the mines in a given
minefield without detonating any of them.

(i)(4 points) We want to provide a first-order knowledge base that formalizes the knowledge of a player in a
game state. We consider the following first-order vocabulary:

• Mine(x), a unary predicate, which denotes that the square x contains a mine

• Adj(x, y), a binary predicate, which means that the square x is adjacent to the square y

• Contains(x, n), a binary predicate, which denotes that the square x contains the number n

Using first-order logic, formalize the following knowledge:

• If a square contains the number 1, then there cannot be a mine in that square, and there is
exactly one mine in the adjacent squares.
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(ii)(8 points) Consider the game state provided in the figure below. The shaded squares represent locations that
have not yet been probed. We use the propositional symbols

AI, AII, BI, BII, CI, CII

to denote that the corresponding square contains a mine. For example, AI denotes that square
(A, I) contains a mine, and ¬AI denotes that there is no mine in square (A, I).
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We have already established the following facts in propositional logic:

• BI ∧ CI ⇔ ¬BII

• BI ⇔ ¬AII ∧ ¬BII

• BII ⇔ ¬AII ∧ ¬BI

Using propositional resolution, and the three facts provided above, prove that there is no mine in
square (A, II).
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2. Information Cascade (20 points)

As part of developing an early warning system against earthquakes, the government of a city has
installed a grid of sound alarms throughout the city to notify the people in case an earthquake is
imminent. The nodes in the grid are arranged in the form of a binary tree. The root of the tree receives
the noise-free signal about the earthquake, and the information is transmitted by a node to its left and
right child nodes, thus creating a downward information cascade starting from the root to the leaves.
Let there be a total ofN nodes in the grid. The scenario is modeled by the following Bayesian network
shown below for the case of N = 7 total nodes:

X1

X2 X3

X4 X5 X6 X7

Bayesian network for N = 7 nodes

Each node Xi represents a random variable corresponding to the binary signal {0, 1} observed at that
node. For the root node X1 where the information cascade begins, the probability of observing a
signal of 1 is 2/3. As the cascade unfolds, each node transmits the signal it received to its left and right
children nodes. However, there is a transmission error of 1/4 at the receiving-end, i.e. the probability
that a node Xi observes the same signal as that observed by its parent π(Xi) is 3/4. The conditional
probability tables of this information cascade process are shown in the tables below.

X1 P (X1)

1 2/3
0 1/3

X π(X) P (X|π(X))

1 1 3/4
0 1 1/4
1 0 1/4
0 0 3/4

(i)(4 points) You are given evidence E that node X2 observed signal 0 and node X3 observed signal 1. Given
this evidence, compute the conditional probability that the signal observed by the root X1 is 1.
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(ii)(4 points) You are given evidence E that node X2 observed signal 0, and all other nodes X3, X4, . . . X7 ob-
served signal 1. Given this evidence, compute the conditional probability that the signal observed
by root X1 is 1.
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(iii)(2 points) You are given evidence E that node X1 observed signal 1. Given this evidence, compute the
conditional probability that the signal observed by X3 is 1.

(iv)(4 points) You are given evidence E that node X1 observed signal 1. Given this evidence, compute the
conditional probability that the signal observed by X7 is 1.
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(v)(6 points) Given evidence E that node X1 observed signal 1, let us define γ(N) to be the expected fraction
of nodes in the network that observed signal 1 (i.e. Xi = 1) . Formally, we can state γ(N) by:

γ(N) =
1

N
·
N∑
i=1

P (Xi = 1|X1 = 1)

Compute γ(N) for the Bayesian network shown above, i.e. for N = 7.
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3. Variable Elimination (15 points)

Considering the Bayesian network shown below, solve the following questions.

A

B

C D

EF

G H I

(i)(4 points) Find a minimal set Sd of variables that must be observed so that d-sep(G;E | Sd) holds. Minimal
means that removing any element from Sd will make the statement false. Note that Sd can be ∅
if the property holds without any additional observations. Briefly explain your answer. We use
d-sep(X;Y | Z) to denote that X is d-separated from Y, given a set of observed variables Z .
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(ii)(2 points) Determine a minimal set of edges that should be removed from the network to convert it into a
polytree. Briefly explain why the resulting network is a polytree.

(iii)(4 points) Consider the resulting polytree after removing the edges from the previous answer. Suggest an
ordering for variable elimination which results in factors with the minimum size possible. Briefly
explain how you selected that ordering.
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(iv)(5 points) Consider the ordering from (iii). For the first four iterations of the variable elimination algorithm,
determine which factors are removed and introduced.
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4. Belief propagation (14 points)

Consider the factor graph shown below and its associated tables. Answer the following questions.

A B

C

D

E

φ1 φ2

A B E φ1(A,B,E)

0 0 0 0.25
0 0 1 0.00
0 1 0 0.75
0 1 1 1.00
1 0 0 0.00
1 0 1 0.75
1 1 0 1.00
1 1 1 0.25

B C D φ2(B,C,D)

0 0 0 0.9
0 0 1 0.7
0 1 0 0.1
0 1 1 0.3
1 0 0 1.0
1 0 1 0.5
1 1 0 0.0
1 1 1 0.5

(i)(6 points) Compute the first message µ(1)φ1→B from factor node φ1 to variable node B. Remember that the
messages from variable nodes v to factor nodes u are initialized as:

µ(0)v→u = 1
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(ii)(8 points) Compute the first message µ(1)φ2→B from factor node φ2 to variable node B, and use the result to
compute the estimated marginal distribution P̂ (2)(B).
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5. Inside an RL robot (18 points)

Imagine that you are a robot. Your task is to press one of the two big red buttons, labeled Left and Right.
Whenever you press a button, a big capital letter (A,B, or C) flashes up in front of you and, depending
on which letter is shown, you get a certain amount of reward.

After pressing the buttons at random for a while, you realize that there is an underlying pattern that
determines the amount of reward that you obtain at each time step. You want to figure out which
buttons you should press in order to maximize the future rewards.

(i)(9 points) As a first step you want to model the system based on your past experience. Assume you have
recorded the past data as tuples, (s, a, s′, r), containing the state s before transition, action a
taken (button pressed), state s′ after the transition, and the reward r received. Given the follow-
ing observations, estimate the transition probabilities and state-dependent rewards and draw the
corresponding MDP.

A, Left, 5, A
A, Right, 10, B
B, Right, 0, C
C, Right, 5, A
A, Right, 5, A
A, Right, 5, A
A, Right, 5, A
A, Right, 10, B
B, Left, 10, B
B, Left, 5, A
A, Right, 10, B
B, Right, 0, C
C, Left, 5, A
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(ii)(9 points) Given the model of the system it is now time to find the optimal policy. You decide to discount
future rewards with a factor of γ = 0.5 and want to use policy iteration to find the optimal button
to press.

Recall that policy iteration starts with an arbitrary initial policy π. Until convergence, it iteratively
computes the value function Vπ(x) for the current policy and then updates the current policy to be
the greedy policy πg w.r.t the computed Vπ(x). The greedy policy for a value function is given by

πg(x) = argmax
a

∑
x′

P (x′|x, a)
(
r(x, a, x′) + γVπ(x

′)
)
,

and given a fixed policy π, the value function Vπ(x) satisfies the condition

Vπ(x) =
∑
x′

P (x′|x, π(x))[r(x, π(x), x′) + γVπ(x
′)].

Compute the optimal policy and its value function for the above MDP. [Hint: To save time, start
with an initial guess for the optimal policy and prove that it is greedy w.r.t. the corresponding
value function, i.e. policy iteration terminates]
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6. Qmax (8 points)

Consider a grid world, in which we want to learn a policy that maximizes future rewards. The world
is modeled as a deterministic MDP that is initially unknown to the learner.

At each state, there are two possible actions: Left and Right, which deterministically move the learner
to the corresponding neighboring state (or have the learner stay in place, if the action tries to move
out of the grid). At each state, an action receives the state-dependent reward shown in the grid-world
below, irrespective of the new state after taking the action.

20

1

30

2

(i)(8 points) The learner uses optimistic Q-learning with a discount factor γ = 0.5 and learning-rate α = 0.5 in
order to learn the optimal policy. Recall that optimistic Q-Learning initializes the reward estimates
for each state-action pair to a high value (Qmax = 100). At each iteration, it picks the action with
the highest estimated Q-value from all the available actions in the current state. Ties are broken
by picking actions in the order (Right, Left).

Write down the first 5 state-action pairs that are taken by the learner when exploring the environ-
ment as well as the corresponding Q-value updates. The learner starts in field 1.
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7. Hidden Markov Models (12 points)

Consider the following Hidden Markov Model. In each time step, a coin is flipped, resulting in heads
(h) or tails (t). There are two coins, one is biased (b) and the other one is fair (f ). After each coin flip
(indexed by i ∈ N), the coin that is used in the next time step changes with probability 3

4 . The prior
for the two coins at i = 1 is P (X1 = b) = 3

5 and P (X1 = f) = 2
5 . The fair coin results in heads and

tails with 1
2 probability each, whereas the biased coin results in heads with probability 4

5 and in tails
with probability 1

5 . This process is illustrated below:
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(i)(6 points) Derive the probability lim
i→∞

P (Xi = b), i.e. the probability of flipping the biased coin as i→∞.
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(ii)(6 points) Derive the probability lim
i→∞

P (Xi = b | Y1 = t), i.e. the probability of flipping the biased coin as

i→∞, given that you observe tails at i = 1.
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