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1. Bayesian networks and Markov chains

Consider the query P (R|S = t,W = t) in the Bayesian network on Slide 20 of https://las.
inf.ethz.ch/courses/pai-f17/slides/pai-06-bayesian-networks-sampling-annotated.pdf

and how Gibbs sampling can answer it.

(i) How many states does the Markov chain have?

(ii) Calculate the transition matrix T containing P (Xt+1 = y | Xt = x) for all x, y.

(iii) What does T 2, the square of the transition matrix, represent?

(iv) What about Tn as n→∞?

(v) Explain how to do probabilistic inference in Bayesian networks, assuming that Tn is
available. Is this a practical way to do inference?

2. Gibbs sampling

In this exercise, you will implement a Gibbs sampling algorithm for performing approximate
inference in Bayesian networks. Although using a factor graph is not necessary for Gibbs sam-
pling, we will use the already available factor graph representation from the previous problem
set to conveniently acquire the Markov blanket of each variable. �at way, all information
required to compute the posterior distribution of a variable v given some values for all other
variables, is contained in the CPTs of the neighboring factor nodes N (v).

More concretely, let x−v be the set of all variables except for v, and s−v be the value of those
variables at the current iteration. Similarly, let xf\v, sf\v be all variables that participate in
factor f except for v, and sf\v be the values thereof. �en, to update the value of v you will
have to draw from the posterior

P (v = d | x−v = s−v) =
1

Z

∏
f∈N (v)

f(v = d,xf\v = sf\v),

where Z is a normalization factor. In practice, you will compute the above product (without
the 1/Z part) for all d ∈ dom(v), then normalize to get a proper distribution, and �nally draw
from that distribution to obtain a new value for v.

You are provided some skeleton Python code in the .zip �le accompanying this document.
Take the following steps for this exercise.
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(i) Install the Python dependencies listed in README.txt, if your system does not already
satisfy them. A�er that, you should be able to run demo.py and produce some plots,
albeit wrong ones for now.

(ii) Implement the missing code in sampling.py marked with TODO. In particular, you have
to �ll in the part that computes the posterior distribution discussed above, as well as the
part that picks a variable and updates the state of the Gibbs sampler.

(iii) If your implementation is correct, you should get (approximately) correct results for the
naive Bayes model of the demo �le that represents the coin �ipping network of exercise
3 in here: https://las.inf.ethz.ch/courses/pai-f16/sol/hw1-sol.pdf.

(iv) Now, you can try out your Gibbs sampler on the earthquake network of the previous
problem set. Compare your results to those you obtained using belief propagation. �ere
are three parameters you can tune:

• �e starting state of the Gibbs sampler. By default, it is created by drawing inde-
pendent and uniformly random values for each variable.

• �e length of the burn-in period, during which the state is updated, but not saved.
�erefore, anything sampled during this stage has no e�ect on the approximate
marginals computed a�erwards.

• �e function used to obtain the approximate marginals that are plo�ed. By default,
this function is a cumulative average, i.e., it computes the approximate marginal
distribution of a variable at step i by looking at the average number of occurences
of each value of that variable among the samples obtained by the algorithm up
to step i. A simple modi�cation would be to only use every k-th sample when
computing these averages, since successive samples are heavily correlated.

3. Markov chains and detailed balance

Assume that you are given a Markov chain with state space Ω and transition matrix T , which
is de�ned for all x, y ∈ Ω and t ≥ 0 as T (x, y) := P (Xt+1 = y | Xt = x). Furthermore, let π
be the stationary distribution of the chain.

(i) Show that, if for some t the current state Xt is distributed according to the stationary
distribution and additionally the chain satis�es the detailed balance equations

π(x)T (x, y) = π(y)T (y, x), for all x, y ∈ Ω,

then the following holds for all k ≥ 0 and x0, . . . , xk ∈ Ω:

P (Xt = x0, . . . , Xt+k = xk) = P (Xt = xk, . . . , Xt+k = x0).

(�is is why a chain that satis�es detailed balance is called reversible.)

(ii) Show that, if T is a symmetric matrix, then the chain satis�es detailed balance, and the
uniform distribution on Ω is stationary for that chain.
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