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1. Particle filter

Suppose that you have a robot, which is moving randomly through an 1-dimensional environ-
ment. You want to track the robot’s position, x, which is discretized to integer values, x ∈ Z.
�e robot’s movement is modeled as a random walk,

xt+1 = xt + εt, (1)

where εt is uniformly distributed and can take integer values in [−3, 3]. To track the robot, a
sensor that measures the distance to the robot has been placed at the origin. �e measurement
model is

yt = (xt + ηt)
2, (2)

where ηt is distributed according to

P (ηt) =


0.6 if ηt = 0

0.2 if |ηt| = 1

0 otherwise.
(3)

You want to use a particle �lter with six particles to track the robot’s position. At initial
time, the robot is at the origin, x0 = 0. Hence, the particles are initialized to xi = 0,
i ∈ {0, 1, 2, 3, 4, 5}.

(i) You draw samples from the distribution of ε0 and obtain (−1,−1, 0, 1, 2, 3). What is the
position of the particles a�er the prediction update?

(ii) You obtain a measurement, y1 = 1. What are the weights of the individual particles?

(iii) Are �ve particles enough to accurately estimate the state? Why/Why not?

(iv) Why would a Kalman �lter not work reliably in this case?
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2. Hero in the maze

Consider the following problem related to probabilistic planning. You are a hero H who is
being chased by a ghost G in a maze.

(i) Suppose the maze is a simple (in�nite) chain of nodes, each node labeled with a number
(from −∞ to ∞): H starts at 0, G starts at -2. H always tries to move away from G,
but only succeeds with probability p, and with probability 1 − p gets stuck (i.e., with
probability p, H moves 1 step to the right, from node i to i+1, and gets 1 unit of reward;
with probability 1 − p, H doesn’t change its location and gets 0 units of reward). G
always chases a�er H and never gets stuck. If G catches H, H incurs -10 reward in the
timestep in which it got caught (and 0 reward in all subsequent time steps). Both G and
H move simultaneously. Write down the state space with the transition probabilities.
For a discount factor γ, what is the expected long term future reward as a function p
and γ? Calculate its value for p = .9 and γ = .95. Hint: You may want to consider the
relative positions of H and G instead of their absolute positions when choosing your state
representation.

(ii) Now, suppose the maze is a “T”, i.e. an (in�nitely large) tree, where only one node, the
starting node of H, has degree 3, all other nodes have degree 2. In the �rst round, H
has the choice of either moving “right” and being chased (the same as above); or moving
”down” and not being chased. If H moves “down”, it will also get stuck with probability
1 − p like above, but only incur reward 1/2 for each step moved (which happens with
probability p. In all subsequent actions, H continues to (a�empt to) move in the same
direction as in the �rst round (i.e., once it decides to move right, it has to continue to
move right etc.) What is the expected long term future reward in this case, as a function
of p and γ? Calculate its value for p = .9 and γ = .95. For these values of p and γ, which
initial action should H take? For a value of γ = .95, give an explicit rule on howH should
choose its initial action as a function of p. Compute the critical (decision-relevant) values
of p (you may have to do this numerically).
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3. Policy iteration

Consider an undiscountedMDP having three states, (1, 2, 3), with rewards -1, -2, 0, respectively.
State 3 is a terminal state. In states 1 and 2 there are two possible actions: a and b. �e transition
model is as follows:

• In state 1, action a moves the agent to state 2 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In state 2, action a moves the agent to state 1 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In either state 1 or state 2, action b moves the agent to state 3 with probability 0.1 and
makes the agent stay put with probability 0.9.

Answer the following questions:

(i) Draw the MDP described above. What can be determined qualitatively about the optimal
policy in states 1 and 2?

(ii) Apply policy iteration, showing each step in full, to determine the optimal policy and
the values of states 1 and 2. Assume that the initial policy has action b in both states.

(iii) What happens to policy iteration if the initial policy has action a in both states? Does
discounting help? Does the optimal policy depend on the discount factor?

4. Value iteration

In �nite MDPs, the value function can be expressed as a vector that has as many entries as
states in the state space, X . Given a value vector V , we de�ned the Bellman update operator,
B(·), for every element of V as follows:

B(V (x)) = max
a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)
)
. (4)

Show that the Bellman operator is a contraction with respect to ‖ · ‖∞, that is to say that, for
any V, V ′, holds that:

max
x∈X
|B(V (x))− B(V ′(x))| = ‖BV − BV ′‖∞ ≤ γ‖V − V ′‖∞. (5)
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